Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
FASEB J ; : fj201800634R, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932868

RESUMO

Hunger-sensing agouti-related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild-type controls, as KO mice act to restore pre-CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.-Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction.

2.
Neuroendocrinology ; 105(4): 372-383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28006784

RESUMO

Although the short-term effects of fasting or energy deficit on hypothalamic neuropeptide circuitries are now better understood, the effects of long-term energy deficit and refeeding remain to be elucidated. We showed that after a long-term energy deficit, mice exhibited persistent hypoleptinemia following the refeeding period despite restoration of fat mass, ovarian activity, and feeding behavior. We aimed to examine the hypothalamic adaptations after 10 weeks of energy deficit and after 10 further weeks of nutritional recovery. To do so, we assessed the mRNA levels of the leptin receptor and the main orexigenic and anorexigenic peptides, and their receptors regulated by leptin. Markers of hypothalamic inflammation were assessed as leptin can also participate in this phenomenon. Long-term time-restricted feeding and separation induced significant increase in mRNA levels of hypothalamic orexigenic peptides, while both Y1 and Y5 receptor mRNAs were downregulated. No changes occurred in the mRNA levels of orexin (OX), melanin-concentrating hormone, pro-opiomelanocortin, 26RFa (26-amino acid RF-amide peptide), and their receptors despite an increase in the expression of melanocortin receptors (MC3-R and MC4-R) and OXR1 (OX receptor 1). The refeeding period induced an overexpression of leptin receptor mRNA in the hypothalamus. The other assessed mRNA levels were normalized except for Y2, Y5, MC3-R, and MC4-R, which remained upregulated. No convincing changes were observed in neuroinflammatory markers, even if interleukin-1ß mRNA levels were increased in parallel with those of Iba1 (ionized calcium-binding adaptor molecule 1), a marker of microglial activation. Normalization of leptin-regulated functions and hypothalamic gene expressions in refed mice with low plasma leptin levels could be sustained by recalibration of hypothalamic sensitivity to leptin.


Assuntos
Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Hipolipoproteinemias/patologia , Hipotálamo/metabolismo , Leptina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal/fisiologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Hipolipoproteinemias/sangue , Hormônios Hipotalâmicos , Melaninas , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Hormônios Hipofisários , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
3.
Am J Physiol Endocrinol Metab ; 308(3): E241-55, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25465889

RESUMO

In restrictive-type anorexia nervosa (AN) patients, physical activity is usually associated with food restriction, but its physiological consequences remain poorly characterized. In female mice, we evaluated the impact of voluntary physical activity with/without chronic food restriction on metabolic and endocrine parameters that might contribute to AN. In this protocol, FRW mice (i.e., food restriction with running wheel) reached a crucial point of body weight loss (especially fat mass) faster than FR mice (i.e., food restriction only). However, in contrast to FR mice, their body weight stabilized, demonstrating a protective effect of a moderate, regular physical activity. Exercise delayed meal initiation and duration. FRW mice displayed food anticipatory activity compared with FR mice, which was strongly diminished with the prolongation of the protocol. The long-term nature of the protocol enabled assessment of bone parameters similar to those observed in AN patients. Both restricted groups adapted their energy metabolism differentially in the short and long term, with less fat oxidation in FRW mice and a preferential use of glucose to compensate for the chronic energy imbalance. Finally, like restrictive AN patients, FRW mice exhibited low leptin levels, high plasma concentrations of corticosterone and ghrelin, and a disruption of the estrous cycle. In conclusion, our model suggests that physical activity has beneficial effects on the adaptation to the severe condition of food restriction despite the absence of any protective effect on lean and bone mass.


Assuntos
Adaptação Fisiológica/fisiologia , Anorexia Nervosa/fisiopatologia , Privação de Alimentos/fisiologia , Atividade Motora/fisiologia , Animais , Metabolismo Energético/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Condicionamento Físico Animal/fisiologia , Reprodução/fisiologia , Corrida/fisiologia , Fatores de Tempo , Redução de Peso
4.
Mol Metab ; 77: 101803, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690518

RESUMO

OBJECTIVE: An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS: To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS: A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS: Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.

5.
Biol Psychiatry ; 93(4): 309-321, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400605

RESUMO

BACKGROUND: A greater understanding of how the brain controls appetite is fundamental to developing new approaches for treating diseases characterized by dysfunctional feeding behavior, such as obesity and anorexia nervosa. METHODS: By modeling neural network dynamics related to homeostatic state and body mass index, we identified a novel pathway projecting from the medial prefrontal cortex (mPFC) to the lateral hypothalamus (LH) in humans (n = 53). We then assessed the physiological role and dissected the function of this mPFC-LH circuit in mice. RESULTS: In vivo recordings of population calcium activity revealed that this glutamatergic mPFC-LH pathway is activated in response to acute stressors and inhibited during food consumption, suggesting a role in stress-related control over food intake. Consistent with this role, inhibition of this circuit increased feeding and sucrose seeking during mild stressors, but not under nonstressful conditions. Finally, chemogenetic or optogenetic activation of the mPFC-LH pathway is sufficient to suppress food intake and sucrose seeking in mice. CONCLUSIONS: These studies identify a glutamatergic mPFC-LH circuit as a novel stress-sensitive anorexigenic neural pathway involved in the cortical control of food intake.


Assuntos
Comportamento Alimentar , Região Hipotalâmica Lateral , Córtex Pré-Frontal , Estresse Psicológico , Animais , Humanos , Camundongos , Comportamento Alimentar/fisiologia , Região Hipotalâmica Lateral/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia
6.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018884

RESUMO

Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.


Assuntos
Proteína Relacionada com Agouti/genética , Corpo Estriado/fisiologia , Dopamina/fisiologia , Homeostase , Neurônios/fisiologia , Transdução de Sinais , Proteína Relacionada com Agouti/metabolismo , Animais , Camundongos , Camundongos Knockout
7.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637536

RESUMO

The importance of hypothalamic insulin signaling on feeding and glucose metabolism remains unclear. We report that insulin acts on AgRP neurons to acutely decrease meal size and thereby limit postprandial glucose and insulin excursions. The promotion of insulin signaling in AgRP neurons decreased meal size without altering total caloric intake, whereas the genetic ablation of the insulin receptor had the opposite effect. The promotion of insulin signaling also decreased the intake of sucrose-sweetened water or high-fat food over standard chow, without influencing food-seeking and hedonic behaviors. The ability of heightened insulin signaling to override the hedonistic consumption of highly palatable high-fat food attenuated the development of systemic insulin resistance, without affecting body weight. Our findings define an unprecedented mechanism by which insulin acutely influences glucose metabolism. Approaches that enhance insulin signaling in AgRP neurons may provide a means for altering feeding behavior in a nutrient-dense environment to combat the metabolic syndrome.


Assuntos
Resistência à Insulina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Neurônios/metabolismo
8.
Cell Rep Med ; 1(7): 100120, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103129

RESUMO

Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.


Assuntos
Aciltransferases/genética , Grelina/análogos & derivados , Grelina/genética , Hipocampo/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Paralisia Supranuclear Progressiva/genética , Aciltransferases/deficiência , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Grelina/metabolismo , Hipocampo/patologia , Humanos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos , Transdução de Sinais , Memória Espacial/fisiologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia
9.
Front Nutr ; 6: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998738

RESUMO

Anorexia Nervosa (AN) is viewed as primarily a psychiatric disorder owing to the considerable behavioral and genetic overlap with mood disorders and other psychiatric traits. However, the recent reconceptualization of AN as one of both psychiatric and metabolic etiology suggests that metabolic circuits conveying hunger, or sensitive to signals of hunger, may be a critical nexus linking metabolic dysfunction to mood disturbances. Within the brain, hunger is primarily percieved by Agouti-related (AgRP) neurons and hunger increases plasma concentrations of the hormone ghrelin, which targets ghrelin receptors on AgRP neurons to facilitate metabolic adaptations to low energy availability. However, beyond the fundamental role in maintaining hunger signaling, AgRP neurons regulate a diverse range of behaviors such as motivation, locomotor activity, negative reinforcement, anxiety, and obsession and a key factor involved in the manifestation of these behavioral changes in response to activation is the presence or absence of food availability. These changes can be considered adaptive in that they promote affective food-seeking strategies in environments with limited food availability. However, it also suggests that these neurons, so well-studied for their metabolic control, shape mood-related behaviors in a context-dependent manner and dysfunctional control leads not only to metabolic problems but also potentially mood-related problems. The purpose of this review is to underline the potential role of AgRP neurons and ghrelin signaling in both the metabolic and behavioral changes observed in anorexia nervosa. We aim to highlight the most recent studies on AgRP neurons and ghrelin signaling and integrate their metabolic and behavioral roles in normal function and highlight how dysfunction may contribute to the development of AN.

10.
Endocrinology ; 159(11): 3605-3614, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204871

RESUMO

Metabolic feedback from the periphery to the brain results from a dynamic physiologic fluctuation of nutrients and hormones, including glucose and fatty acids, ghrelin, leptin, and insulin. The specific interactions between humoral factors and how they influence feeding is largely unknown. We hypothesized that acute glucose availability may alter how the brain responds to ghrelin, a hormonal signal of energy availability. Acute glucose administration suppressed a range of ghrelin-induced behaviors as well as gene expression changes in hypothalamic neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurons after ghrelin administration. Knockdown of the energy-sensing molecule AMP-activated protein kinase (AMPK) in AgRP neurons resulted in loss of the glucose effect, and mice responded as though pretreated with saline. Conversely, 2-deoxyglucose (2-DG), which decreases glucose availability, potentiated ghrelin-induced feeding and increased hypothalamic NPY mRNA levels. AMPK knockdown did not alter the additive effect of 2-DG and ghrelin on feeding. Our findings support the idea that computation of energy status is dynamic, is informed by multiple signals, and responds to acute fluctuations in metabolic state. These observations are broadly relevant to the investigation of neuroendocrine control of feeding and highlight the underappreciated complexity of control within these systems.


Assuntos
Proteína Relacionada com Agouti/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Glucose/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Antimetabólitos/farmacologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Desoxiglucose/farmacologia , Técnicas de Silenciamento de Genes , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/genética , RNA Mensageiro/metabolismo
11.
Endocrinology ; 159(6): 2473-2483, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697769

RESUMO

Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.


Assuntos
Adaptação Fisiológica/genética , Proteína Relacionada com Agouti/metabolismo , Restrição Calórica , Carnitina O-Acetiltransferase/fisiologia , Comportamento Alimentar/fisiologia , Homeostase/genética , Neurônios/metabolismo , Animais , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Físico Animal/fisiologia
12.
Front Mol Neurosci ; 11: 321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333721

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons, pathological accumulation of alpha-synuclein and motor symptoms, but also by non-motor symptoms. Metabolic abnormalities including body weight loss have been reported in patients and could precede by several years the emergence of classical motor manifestations. However, our understanding of the pathophysiological mechanisms underlying body weight loss in PD is limited. The present study investigated the links between alpha-synuclein accumulation and energy metabolism in transgenic mice overexpressing Human wild-type (WT) alpha-synuclein under the Thy1 promoter (Thy1-aSYN mice). Results showed that Thy1-aSYN mice gained less body weight throughout life than WT mice, with significant difference observed from 3 months of age. Body composition analysis of 6-month-old transgenic animals showed that body mass loss was due to lower adiposity. Thy1-aSYN mice displayed lower food consumption, increased spontaneous activity, as well as a reduced energy expenditure compared to control mice. While no significant change in glucose or insulin responses were observed, Thy1-aSYN mice had significantly lower plasmatic levels of insulin and leptin than control animals. Moreover, the pathological accumulation of alpha-synuclein in the hypothalamus of 6-month-old Thy1-aSYN mice was associated with a down-regulation of the phosphorylated active form of the signal transducer and activator of transcription 3 (STAT3) and of Rictor (the mTORC2 signaling pathway), known to couple hormonal signals with the maintenance of metabolic and energy homeostasis. Collectively, our results suggest that (i) metabolic alterations are an important phenotype of alpha-synuclein overexpression in mice and that (ii) impaired STAT3 activation and mTORC2 levels in the hypothalamus may underlie the disruption of feeding regulation and energy metabolism in Thy1-aSYN mice.

13.
Cell Rep ; 22(7): 1745-1759, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29444428

RESUMO

AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Carnitina O-Acetiltransferase/metabolismo , Ácidos Graxos/metabolismo , Animais , Colecistocinina/administração & dosagem , Ingestão de Alimentos , Jejum , Comportamento Alimentar , Deleção de Genes , Glucose/metabolismo , Teste de Tolerância a Glucose , Injeções Intraperitoneais , Injeções Intraventriculares , Insulina/administração & dosagem , Integrases/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout , Proteômica , Reprodutibilidade dos Testes
14.
Mol Metab ; 6(8): 882-896, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28752052

RESUMO

OBJECTIVE: Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. METHODS: A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. RESULTS: The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD-assisted stimulation of MBH GHSR neuronal activity was sufficient to induce food intake. Axonal projections of GHSR-expressing MBH neurons were observed in a subset of hypothalamic and extra-hypothalamic regions. CONCLUSIONS: These results suggest that 1) activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2) activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3) axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.


Assuntos
Ingestão de Alimentos , Jejum/metabolismo , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Animais , Jejum/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
15.
Neurosci Biobehav Rev ; 73: 255-275, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27914942

RESUMO

The gastro-intestinal peptide ghrelin has been assigned many functions. These include appetite regulation, energy metabolism, glucose homeostasis, intestinal motility, anxiety, memory or neuroprotection. In the last decade, this pleiotropic peptide has been proposed as a therapeutic agent in gastroparesis for diabetes and in cachexia for cancer. Ghrelin and its receptor, which is expressed throughout the brain, play an important role in motivation and reward. Ghrelin finely modulates the mesencephalic dopaminergic signaling and is thus currently studied in pathological conditions including dopamine-related disorders. Dopamine regulates motivated behaviors, modulating reward processes, emotions and motor functions to enable the survival of individuals and species. Numerous dopamine-related disorders including Parkinson's disease or eating disorders like anorexia nervosa involve altered ghrelin levels. However, despite the growing interest for ghrelin in these pathological conditions, global integrative studies investigating its role in brain dopaminergic structures are still lacking. In this review, we discuss the role of ghrelin on dopaminergic neurons and its relevance in the search for new therapeutics for Parkinson's disease- and anorexia nervosa-related dopamine deficits.


Assuntos
Dopamina/metabolismo , Grelina/metabolismo , Caquexia , Metabolismo Energético , Humanos , Recompensa
16.
Artigo em Inglês | MEDLINE | ID: mdl-26042085

RESUMO

Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.

17.
PLoS One ; 9(8): e103775, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090643

RESUMO

BACKGROUND: Anorexia nervosa is a primary psychiatric disorder, with non-negligible rates of mortality and morbidity. Some of the related alterations could participate in a vicious cycle limiting the recovery. Animal models mimicking various physiological alterations related to anorexia nervosa are necessary to provide better strategies of treatment. AIM: To explore physiological alterations and recovery in a long-term mouse model mimicking numerous consequences of severe anorexia nervosa. METHODS: C57Bl/6 female mice were submitted to a separation-based anorexia protocol combining separation and time-restricted feeding for 10 weeks. Thereafter, mice were housed in standard conditions for 10 weeks. Body weight, food intake, body composition, plasma levels of leptin, adiponectin, IGF-1, blood levels of GH, reproductive function and glucose tolerance were followed. Gene expression of several markers of lipid and energy metabolism was assayed in adipose tissues. RESULTS: Mimicking what is observed in anorexia nervosa patients, and despite a food intake close to that of control mice, separation-based anorexia mice displayed marked alterations in body weight, fat mass, lean mass, bone mass acquisition, reproductive function, GH/IGF-1 axis, and leptinemia. mRNA levels of markers of lipogenesis, lipolysis, and the brown-like adipocyte lineage in subcutaneous adipose tissue were also changed. All these alterations were corrected during the recovery phase, except for the hypoleptinemia that persisted despite the full recovery of fat mass. CONCLUSION: This study strongly supports the separation-based anorexia protocol as a valuable model of long-term negative energy balance state that closely mimics various symptoms observed in anorexia nervosa, including metabolic adaptations. Interestingly, during a recovery phase, mice showed a high capacity to normalize these parameters with the exception of plasma leptin levels. It will be interesting therefore to explore further the central and peripheral effects of the uncorrected hypoleptinemia during recovery from separation-based anorexia.


Assuntos
Anorexia Nervosa/fisiopatologia , Ansiedade de Separação/fisiopatologia , Comportamento Alimentar , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Adiponectina/metabolismo , Tecido Adiposo/patologia , Animais , Anorexia Nervosa/sangue , Anorexia Nervosa/complicações , Anorexia Nervosa/genética , Ansiedade de Separação/sangue , Ansiedade de Separação/complicações , Composição Corporal , Modelos Animais de Doenças , Ingestão de Alimentos , Ciclo Estral , Feminino , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Oxirredução , Fenótipo , Reprodução , Fatores de Tempo , Redução de Peso
18.
Artigo em Inglês | MEDLINE | ID: mdl-23549309

RESUMO

Increasing clinical and therapeutic interest in the neurobiology of eating disorders reflects their dramatic impact on health. Chronic food restriction resulting in severe weight loss is a major symptom described in restrictive anorexia nervosa (AN) patients, and they also suffer from metabolic disturbances, infertility, osteopenia, and osteoporosis. Restrictive AN, mostly observed in young women, is the third largest cause of chronic illness in teenagers of industrialized countries. From a neurobiological perspective, AN-linked behaviors can be considered an adaptation that permits the endurance of reduced energy supply, involving central and/or peripheral reprograming. The severe weight loss observed in AN patients is accompanied by significant changes in hormones involved in energy balance, feeding behavior, and bone formation, all of which can be replicated in animals models. Increasing evidence suggests that AN could be an addictive behavior disorder, potentially linking defects in the reward mechanism with suppressed food intake, heightened physical activity, and mood disorder. Surprisingly, the plasma levels of ghrelin, an orexigenic hormone that drives food-motivated behavior, are increased. This increase in plasma ghrelin levels seems paradoxical in light of the restrained eating adopted by AN patients, and may rather result from an adaptation to the disease. The aim of this review is to describe the role played by ghrelin in AN focusing on its central vs. peripheral actions. In AN patients and in rodent AN models, chronic food restriction induces profound alterations in the « ghrelin ¼ signaling that leads to the development of inappropriate behaviors like hyperactivity or addiction to food starvation and therefore a greater depletion in energy reserves. The question of a transient insensitivity to ghrelin and/or a potential metabolic reprograming is discussed in regard of new clinical treatments currently investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA