Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838764

RESUMO

CO2 is the most abundant greenhouse gas, and for this reason, it is the main target for finding solutions to climatic change. A strategy of environmental remediation is the transformation of CO2 to an aggregated value product to generate a carbon-neutral cycle. CO2 reduction is a great challenge because of the large C=O dissociation energy, ~179 kcal/mol. Heterogeneous photocatalysis is a strategy to address this issue, where the adsorption process is the fundamental step. The focus of this work is the role of adsorption in CO2 reduction by means of modeling the CO2 adsorption in rutile metallic oxides (TiO2, GeO2, SnO2, IrO2 and PbO2) using Density Functional Theory (DFT) and periodic DFT methods. The comparison of adsorption on different metal oxides forming the same type of crystal structure allowed us to observe the influence of the metal in the adsorption process. In the same way, we performed a comparison of the adsorption capability between two different surface planes, (001) and (110). Two CO2 configurations were observed, linear and folded: the folded conformations were observed in TiO2, GeO2 and SnO2, while the linear conformations were present in IrO2 and PbO2. The largest adsorption efficiency was displayed by the (001) surface planes. The CO2 linear and folded configurations were related to the interaction of the oxygen on the metallic surface with the adsorbate carbon, and the linear conformations were associated with the physisorption and folded configurations with chemisorption. TiO2 was the material with the best performance for CO2 interactions during the adsorption.


Assuntos
Dióxido de Carbono , Óxidos , Dióxido de Carbono/química , Adsorção , Óxidos/química , Carbono , Catálise
2.
Phys Chem Chem Phys ; 24(8): 5233-5245, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35167639

RESUMO

A series of SARS-CoV-2 main protease (SARS-CoV-2-Mpro) inhibitors were modeled using evolutive grammar algorithms. We have generated an automated program that finds the best candidate to inhibit the main protease, Mpro, of SARS-CoV-2. The candidates were constructed based on a pharmacophore model of the above-mentioned target; relevant moieties of such molecules were modified using data-basis sets with similar chemical behavior to the reference moieties. Additionally, we used the SMILES language to translate 3D chemical structures to 1D words; then, an evolutive grammar algorithm was used to explore the chemical space and obtain new candidates, which were evaluated via the binding energy of molecular coupling assays as an evaluation function. Finally, sixteen molecules were obtained in 3 runs of our program, three of which show promising binding properties as SARS-CoV-2-Mpro inhibitors. One of them, TTO, maintained its relevant binding properties during 100 ns molecular dynamics experiments. For this reason, TTO is the best candidate to inhibit SARS-CoV-2-Mpro. The software we developed for this contribution is available at the following URL: https://github.com/masotelof/GEMolecularDesign.


Assuntos
COVID-19 , Inibidores de Proteases , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2
3.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158250

RESUMO

Coumarin-hydroxamic acid derivatives 7a-k were herein designed with a dual purpose: as antiproliferative agents and fluorescent probes. The compounds were synthesized in moderate yields (30-87%) through a simple methodology, biological evaluation was carried out on prostate (PC3) and breast cancer (BT-474 and MDA-MB-231) cell lines to determine the effects on cell proliferation and gene expression. For compounds 7c, 7e, 7f, 7i and 7j the inhibition of cancer cell proliferation was similar to that found with the reference compound at a comparable concentration (10 µM), in addition, their molecular docking studies performed on histone deacetylases 1, 6 and 8 showed strong binding to the respective active sites. In most cases, antiproliferative activity was accompanied by greater levels of cyclin-dependent kinase inhibitor p21, downregulation of the p53 tumor suppressor gene, and regulation of cyclin D1 gene expression. We conclude that compounds 7c, 7e, 7f, 7i and 7j may be considered as potential anticancer agents, considering their antiproliferative properties, their effect on the regulation of the genes, as well as their capacity to dock to the active sites. The fluorescent properties of compound 7j and 7k suggest that they can provide further insight into the mechanism of action.


Assuntos
Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Cumarínicos , Corantes Fluorescentes , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Neoplasias da Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade
4.
Chem Biol Drug Des ; 104(1): e14596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054402

RESUMO

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and ß-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines. Additionally, cell cycle analysis was performed using flow cytometry. Computational studies, including molecular docking, pharmacokinetic properties, and an analysis of DFT and QTAIM chemical descriptors, were performed to gain insights into the electronic structure and elucidate the molecular binding of the new ß-lapachone and doxorubicin analogs with a DNA sequence and Topoisomerase II (Topo II)α. Our results show that 4a analog displays the highest antiproliferative activity in cancer cell lines by inducing cell death. We observed that stacking interactions and hydrogen bonding are essential to stabilize the molecule-DNA-Topo IIα complex. Moreover, 4a and 5a analogs inhibited Topo's DNA cleavage activity. Pharmacodynamic results indicated that studied molecules have favorable adsorption and permeability properties. The calculated chemical descriptors indicate that electron accumulation in quinone rings is relevant to the reactivity and biological activity. Based on our results, 4a is a strong candidate for becoming an anticancer drug.


Assuntos
Antineoplásicos , Proliferação de Células , DNA Topoisomerases Tipo II , Doxorrubicina , Simulação de Acoplamento Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Clivagem do DNA/efeitos dos fármacos
5.
Daru ; 29(2): 291-310, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34297326

RESUMO

PURPOSE: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of gene expression due to their overexpression in several cancer forms. Therefore, these enzymes are considered as a potential anticancer drug target. Different synthetic and natural structures have been studied as HDACs inhibitors; based on available structural design information, the capping group is important for the biological activity due to the different interactions in the active site entrance. The present study aimed to analyze high substituted pyridine as a capping group, which included carrying out the synthesis, antiproliferative activity analysis, and docking studies of these novel compounds. METHODS: To achieve the synthesis of these derivatives, four reaction steps were performed, generating desired products 15a-k. Their effects on cell proliferation and gene expression of p21, cyclin D1, and p53 were determined using the sulphorhodamine B (SRB) method and quantitative real-time polymerase chain reaction. The HDAC1, HDAC6, and HDAC8 isoforms were used for performing docking experiments with our 15a-k products. RESULT: The products 15a-k were obtained in overall yields of 40-71%. Compounds 15j and 15k showed the highest antiproliferative activity in the breast (BT-474 and MDA-MB-231) and prostate (PC3) cancer cell lines at a concentration of 10 µM. These compounds increased p21 mRNA levels and decreased cyclin D1 and p53 gene expression. The docking study showed an increment in the strength, and in the number of interactions performed by the capping moiety of the tested molecules compared with SAHA; interactions displayed are mainly van der Waals, π-stacking, and hydrogen bond. CONCLUSION: The synthesized compounds 2-thiophene (15j) and 2-furan (15k) pyridine displayed cell growth inhibition, regulation of genes related to cell cycle progression in highly metastatic cancer cell lines. The molecular coupling analysis performed with HDAC1, HDAC6 and HDAC8 showed an increment in the number of interactions performed by the capping moiety and consequently in the strength of the capping group interaction.


Assuntos
Neoplasias da Mama/genética , Ciclina D1/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Furanos/síntese química , Inibidores de Histona Desacetilases/síntese química , Neoplasias da Próstata/genética , Piridinas/química , Tiofenos/síntese química , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética/efeitos dos fármacos , Feminino , Furanos/química , Furanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Células PC-3 , Gravidez , Neoplasias da Próstata/tratamento farmacológico , Tiofenos/química , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA