Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 134(6): 1042-54, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18805096

RESUMO

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.


Assuntos
Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biossíntese de Proteínas , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Alinhamento de Sequência , Sinapses
2.
J Neurosci ; 35(29): 10600-12, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203153

RESUMO

New neurons are generated continuously in the subgranular zone of the hippocampus and integrate into existing hippocampal circuits throughout adulthood. Although the addition of these new neurons may facilitate the formation of new memories, as they integrate, they provide additional excitatory drive to CA3 pyramidal neurons. During development, to maintain homeostasis, new neurons form preferential contacts with local inhibitory circuits. Using retroviral and transgenic approaches to label adult-generated granule cells, we first asked whether a comparable process occurs in the adult hippocampus in mice. Similar to development, we found that, during adulthood, new neurons form connections with inhibitory cells in the dentate gyrus, hilus, and CA3 regions as they integrate into hippocampal circuits. In particular, en passant bouton and filopodia connections with CA3 interneurons peak when adult-generated dentate granule cells (DGCs) are ∼4 weeks of age, a time point when these cells are most excitable. Consistent with this, optical stimulation of 4-week-old (but not 6- or 8-week-old) adult-generated DGCs strongly activated CA3 interneurons. Finally, we found that CA3 interneurons were activated robustly during learning and that their activity was strongly coupled with activity of 4-week-old (but not older) adult-generated DGCs. These data indicate that, as adult-generated neurons integrate into hippocampal circuits, they transiently form strong anatomical, effective, and functional connections with local inhibitory circuits in CA3. Significance statement: New neurons are generated continuously in the subgranular zone of the hippocampus and integrate into existing hippocampal circuits throughout adulthood. Understanding how these cells integrate within well formed circuits will increase our knowledge about the basic principles governing circuit assembly in the adult hippocampus. This study uses a combined connectivity analysis (anatomical, functional, and effective) of the output connections of adult-born hippocampal cells to show that, as these cells integrate into hippocampal circuits, they transiently form strong connections with local inhibitory circuits. This transient increase of connectivity may represent an homeostatic process necessary to accommodate changes in the excitation/inhibition balance induced by the addition of these new excitatory cells to the preexisting excitatory hippocampal circuits.


Assuntos
Hipocampo/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Envelhecimento , Animais , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Optogenética
3.
Cell Mol Life Sci ; 70(2): 335-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22945799

RESUMO

KIF1Bß is a kinesin-like, microtubule-based molecular motor protein involved in anterograde axonal vesicular transport in vertebrate and invertebrate neurons. Certain KIF1Bß isoforms have been implicated in different forms of human neurodegenerative disease, with characterization of their functional integration and regulation in the context of synaptic signaling still ongoing. Here, we characterize human KIF1Bß (isoform NM015074), whose expression we show to be developmentally regulated and elevated in cortical areas of the CNS (including the motor cortex), in the hippocampus, and in spinal motor neurons. KIF1Bß localizes to the cell body, axon, and dendrites, overlapping with synaptic-vesicle and postsynaptic-density structures. Correspondingly, in purified cortical synaptoneurosomes, KIF1Bß is enriched in both pre- and postsynaptic structures, forming detergent-resistant complexes. Interestingly, KIF1Bß forms RNA-protein complexes, containing the dendritically localized Arc and Calmodulin mRNAs, proteins previously shown to be part of RNA transport granules such as Purα, FMRP and FXR2P, and motor protein KIF3A, as well as Calmodulin. The interaction between KIF1Bß and Calmodulin is Ca(+2)-dependent and takes place through a domain mapped at the carboxy-terminal tail of the motor. Live imaging of cortical neurons reveals active movement by KIF1Bß at dendritic processes, suggesting that it mediates the transport of dendritically localized mRNAs. Finally, we show that synaptic recruitment of KIF1Bß is activity-dependent and increased by stimulation of metabotropic or ionotropic glutamate receptors. The activity-dependent synaptic recruitment of KIF1Bß, its interaction with Ca(2+) sensor Calmodulin, and its new role as a dendritic motor of ribonucleoprotein complexes provide a novel basis for understanding the concerted co-ordination of motor protein mobilization and synaptic signaling pathways.


Assuntos
Sistema Nervoso Central/metabolismo , Dendritos/metabolismo , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Neurônios Motores/metabolismo , Ribonucleoproteínas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular Tumoral , Humanos , Cinesinas/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/etiologia , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores de Glutamato/metabolismo , Transdução de Sinais
4.
J Neurosci ; 32(49): 17857-68, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223304

RESUMO

Memory stabilization following encoding (synaptic consolidation) or memory reactivation (reconsolidation) requires gene expression and protein synthesis (Dudai and Eisenberg, 2004; Tronson and Taylor, 2007; Nader and Einarsson, 2010; Alberini, 2011). Although consolidation and reconsolidation may be mediated by distinct molecular mechanisms (Lee et al., 2004), disrupting the function of the transcription factor CREB impairs both processes (Kida et al., 2002; Mamiya et al., 2009). Phosphorylation of CREB at Ser133 recruits CREB binding protein (CBP)/p300 coactivators to activate transcription (Chrivia et al., 1993; Parker et al., 1996). In addition to this well known mechanism, CREB regulated transcription coactivators (CRTCs), previously called transducers of regulated CREB (TORC) activity, stimulate CREB-mediated transcription, even in the absence of CREB phosphorylation. Recently, CRTC1 has been shown to undergo activity-dependent trafficking from synapses and dendrites to the nucleus in excitatory hippocampal neurons (Ch'ng et al., 2012). Despite being a powerful and specific coactivator of CREB, the role of CRTC in memory is virtually unexplored. To examine the effects of increasing CRTC levels, we used viral vectors to locally and acutely increase CRTC1 in the dorsal hippocampus dentate gyrus region of mice before training or memory reactivation in context fear conditioning. Overexpressing CRTC1 enhanced both memory consolidation and reconsolidation; CRTC1-mediated memory facilitation was context specific (did not generalize to nontrained context) and long lasting (observed after virally expressed CRTC1 dissipated). CREB overexpression produced strikingly similar effects. Therefore, increasing CRTC1 or CREB function is sufficient to enhance the strength of new, as well as established reactivated, memories without compromising memory quality.


Assuntos
Giro Denteado/fisiologia , Memória/fisiologia , Fatores de Transcrição/fisiologia , Animais , Condicionamento Psicológico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Giro Denteado/metabolismo , Medo/fisiologia , Medo/psicologia , Feminino , Genes fos/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Cultura Primária de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção/métodos
5.
Neuron ; 111(11): 1760-1775.e8, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36996810

RESUMO

The proteome of glutamatergic synapses is diverse across the mammalian brain and involved in neurodevelopmental disorders (NDDs). Among those is fragile X syndrome (FXS), an NDD caused by the absence of the functional RNA-binding protein FMRP. Here, we demonstrate how the brain region-specific composition of postsynaptic density (PSD) contributes to FXS. In the striatum, the FXS mouse model shows an altered association of the PSD with the actin cytoskeleton, reflecting immature dendritic spine morphology and reduced synaptic actin dynamics. Enhancing actin turnover with constitutively active RAC1 ameliorates these deficits. At the behavioral level, the FXS model displays striatal-driven inflexibility, a typical feature of FXS individuals, which is rescued by exogenous RAC1. Striatal ablation of Fmr1 is sufficient to recapitulate behavioral impairments observed in the FXS model. These results indicate that dysregulation of synaptic actin dynamics in the striatum, a region largely unexplored in FXS, contributes to the manifestation of FXS behavioral phenotypes.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Proteína do X Frágil da Deficiência Intelectual/genética , Actinas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Espinhas Dendríticas/metabolismo , Mamíferos/metabolismo
6.
J Neurosci ; 31(24): 8786-802, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677163

RESUMO

Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.


Assuntos
Proteína de Ligação a CREB/metabolismo , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Regulação para Cima/fisiologia , Análise de Variância , Animais , Proteínas de Bactérias/genética , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína de Ligação a CREB/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Carbazóis/farmacologia , Linhagem Celular Transformada , Chlorocebus aethiops , Condicionamento Clássico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Discriminação Psicológica , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Medo , Transferência Ressonante de Energia de Fluorescência , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Alcaloides Indólicos/farmacologia , Potenciação de Longa Duração/genética , Proteínas Luminescentes/genética , Aprendizagem em Labirinto , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Técnicas de Patch-Clamp , Fenilalanina/genética , RNA Mensageiro/metabolismo , Ratos , Comportamento Social , Transfecção/métodos , Tirosina/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Nat Commun ; 13(1): 680, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115539

RESUMO

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Assuntos
Autofagia/fisiologia , Espinhas Dendríticas/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Potenciais Sinápticos/fisiologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Nat Neurosci ; 10(5): 578-87, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17417632

RESUMO

Fragile X syndrome (FXS) results from the loss of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD-95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3' untranslated region of the PSD-95 (also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD-95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Animais , Encéfalo/citologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteína 4 Homóloga a Disks-Large , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Proteína do X Frágil da Deficiência Intelectual/genética , Guanilato Quinases , Imunoprecipitação/métodos , Hibridização In Situ/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Biossíntese de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transfecção , Tubulina (Proteína)/metabolismo
9.
Mol Pain ; 6: 52, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20836873

RESUMO

Gastrin-releasing peptide (GRP) has been proposed as a peptidergic molecule for behavioral fear and itching. Immunohistochemistry and in situ hybridization studies have shown that GRP and GRP receptor are widely distributed in forebrain areas. Less information is available for the functional action for GRP in the prefrontal cortex including the anterior cingulate cortex (ACC). Here we used whole-cell patch-clamp recording technique to study the modulation of synaptic transmission by GRP in the ACC. We found that GRP increased the frequency of sIPSCs recorded while had no significant effect on sEPSCs in ACC pyramidal neurons. The facilitatory effect of GRP on sIPSCs was blocked by the GRP receptor antagonist, RC3095. In the presence of TTX, however, GRP had no effect on the mIPSCs. Therefore, activation of GRP receptor may facilitate the excitation of the interneurons and enhanced spontaneous GABAergic, but not glutamatergic neurotransmission. Similar results on GRP modulation of GABAergic transmission were observed in the insular cortex and amygdala, suggesting a general possible effect of GRP on cortical inhibitory transmission. Our results suggest that GRP receptor is an important regulator of inhibitory circuits in forebrain areas.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Giro do Cíngulo/metabolismo , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Bombesina/análogos & derivados , Bombesina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Glutamatos/metabolismo , Giro do Cíngulo/citologia , Giro do Cíngulo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Picrotoxina/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores da Bombesina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
10.
J Neurochem ; 111(3): 635-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19659572

RESUMO

Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Análise de Variância , Animais , Biofísica , Bromodesoxiuridina/metabolismo , Butadienos/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicina/farmacologia , Glicinérgicos/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nitrilas/farmacologia , Técnicas de Patch-Clamp/métodos , Picrotoxina/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia
11.
Nat Commun ; 10(1): 3454, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371726

RESUMO

Copy-number variants of the CYFIP1 gene in humans have been linked to autism spectrum disorders (ASD) and schizophrenia (SCZ), two neuropsychiatric disorders characterized by defects in brain connectivity. Here, we show that CYFIP1 plays an important role in brain functional connectivity and callosal functions. We find that Cyfip1-heterozygous mice have reduced functional connectivity and defects in white matter architecture, similar to phenotypes found in patients with ASD, SCZ and other neuropsychiatric disorders. Cyfip1-deficient mice also present decreased myelination in the callosal axons, altered presynaptic function, and impaired bilateral connectivity. Finally, Cyfip1 deficiency leads to abnormalities in motor coordination, sensorimotor gating and sensory perception, which are also known neuropsychiatric disorder-related symptoms. These results show that Cyfip1 haploinsufficiency compromises brain connectivity and function, which might explain its genetic association to neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Axônios , Comportamento Animal , Encéfalo/diagnóstico por imagem , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Estudos de Associação Genética , Haploinsuficiência , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso/genética , Fenótipo , Desempenho Psicomotor , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Filtro Sensorial , Substância Branca
12.
J Neurosci ; 27(33): 8885-92, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699670

RESUMO

Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.


Assuntos
Corpo Estriado/citologia , Neurônios/fisiologia , Receptores de Dopamina D2/fisiologia , Ribonucleoproteínas Citoplasmáticas Pequenas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Compostos de Bifenilo/farmacologia , Células Cultivadas , Antagonistas dos Receptores de Dopamina D2 , Glutamato Descarboxilase/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Técnicas de Patch-Clamp/métodos , Piperazinas/farmacologia , RNA Longo não Codificante , RNA Mensageiro/biossíntese , RNA não Traduzido , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ribonucleoproteínas Citoplasmáticas Pequenas/deficiência , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
13.
Neuropsychopharmacology ; 42(7): 1502-1510, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28205605

RESUMO

The formation of long-lasting memories requires coordinated changes in gene expression and protein synthesis. Although many studies implicate DNA modifications (DNA methylation, histone modifications) in memory formation, the contributions of RNA modifications remain largely unexplored. Here we investigated the role of mRNA methylation in hippocampal-dependent memory formation in mice. RNA modifications are highly dynamic and readily reversible. Methyltransferases add a methyl group to mRNA while demethylases remove methyl groups. Here we focused on examining the role of the best characterized RNA demethylase, FTO (fat mass and obesity-associated) in memory. We observed that FTO is expressed in the nuclei, dendrites and near dendritic spines of mouse dorsal hippocampal CA1 neurons. Next, we found that contextual fear conditioning transiently (0.5 h) decreased Fto levels in these neurons, with the largest decrease in FTO observed near synapses. The decrease in FTO observed shortly after contextual fear conditioning suggests that FTO normally constrains memory formation. To directly test this, we artificially decreased FTO levels in dorsal hippocampus of otherwise normal (wild-type) mice by microinjecting before training a single herpes simplex virus (HSV) vector expressing either CRISPR/Cas9 or shRNA targeted against Fto. Decreasing FTO using either method specifically enhanced contextual fear memory. Together, these results show the importance of FTO during memory formation and, furthermore, implicate mRNA modification and epi-transcriptomics as novel regulators of memory formation.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Região CA1 Hipocampal/metabolismo , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Memória/fisiologia , RNA Mensageiro/metabolismo , Animais , Medo/psicologia , Masculino , Metilação , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL
14.
Nat Commun ; 8(1): 293, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819097

RESUMO

The brain cytoplasmic (BC1) RNA is a non-coding RNA (ncRNA) involved in neuronal translational control. Absence of BC1 is associated with altered glutamatergic transmission and maladaptive behavior. Here, we show that pyramidal neurons in the barrel cortex of BC1 knock out (KO) mice display larger excitatory postsynaptic currents and increased spontaneous activity in vivo. Furthermore, BC1 KO mice have enlarged spine heads and postsynaptic densities and increased synaptic levels of glutamate receptors and PSD-95. Of note, BC1 KO mice show aberrant structural plasticity in response to whisker deprivation, impaired texture novel object recognition and altered social behavior. Thus, our study highlights a role for BC1 RNA in experience-dependent plasticity and learning in the mammalian adult neocortex, and provides insight into the function of brain ncRNAs regulating synaptic transmission, plasticity and behavior, with potential relevance in the context of intellectual disabilities and psychiatric disorders.Brain cytoplasmic (BC1) RNA is a non-coding RNA that has been implicated in translational regulation, seizure, and anxiety. Here, the authors show that in the cortex, BC1 RNA is required for sensory deprivation-induced structural plasticity of dendritic spines, as well as for correct sensory learning and social behaviors.


Assuntos
Aprendizagem/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , RNA Citoplasmático Pequeno/genética , Animais , Sequência de Bases , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hibridização in Situ Fluorescente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Neocórtex/citologia , Neocórtex/metabolismo , Plasticidade Neuronal/genética , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Privação Sensorial/fisiologia , Homologia de Sequência do Ácido Nucleico , Comportamento Social , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vibrissas/metabolismo , Vibrissas/fisiologia
15.
J Comp Neurol ; 498(1): 58-67, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16856176

RESUMO

Neurophysiologic data suggest that orexin neurons are directly excited by ATP through purinergic receptors (P2XR). Anatomical studies, though reporting P2XR in the hypothalamus, did not describe it in the perifornical hypothalamic area, where orexinergic neurons are located. Here we report the presence of the P2X(2)R subunit in the rat perifornical hypothalamus and demonstrate that hypothalamic orexin neurons express the P2X(2)R. Double immunohistochemistry showed that virtually all orexin-immunoreactive neurons are also P2X(2)R immunoreactive, whereas 80% of P2X(2)R-immunoreactive neurons are also orexin positive. Triple-labeling experiments, combining fluorescence in situ hybridization for P2X(2)R mRNA and P2X(2)R/orexin double immunofluorescence, confirmed these findings. In addition, in situ hybridization demonstrated that P2X(2)R mRNA is localized in cellular processes of orexinergic neurons. The present data support neurophysiologic findings on ATP modulation of orexinergic function and provide direct evidence that the entire population of orexin neurons expresses a P2XR subtype, namely, P2X(2)R. Thus, purinergic transmission might intervene in modulating key functions known to be controlled by the orexinergic system, such as feeding behavior and arousal.


Assuntos
Trifosfato de Adenosina/metabolismo , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Animais , Nível de Alerta/fisiologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Comportamento Alimentar/fisiologia , Imunofluorescência/métodos , Hipotálamo/citologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Receptores de Orexina , Orexinas , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Receptores Purinérgicos P2X2
16.
Neuropsychopharmacology ; 41(13): 2987-2993, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27187069

RESUMO

The dentate gyrus (DG) is important for encoding contextual memories, but little is known about how a population of DG neurons comes to encode and support a particular memory. One possibility is that recruitment into an engram depends on a neuron's excitability. Here, we manipulated excitability by overexpressing CREB in a random population of DG neurons and examined whether this biased their recruitment to an engram supporting a contextual fear memory. To directly assess whether neurons overexpressing CREB at the time of training became critical components of the engram, we examined memory expression while the activity of these neurons was silenced. Chemogenetically (hM4Di, an inhibitory DREADD receptor) or optogenetically (iC++, a light-activated chloride channel) silencing the small number of CREB-overexpressing DG neurons attenuated memory expression, whereas silencing a similar number of random neurons not overexpressing CREB at the time of training did not. As post-encoding reactivation of the activity patterns present during initial experience is thought to be important in memory consolidation, we investigated whether post-training silencing of neurons allocated to an engram disrupted subsequent memory expression. We found that silencing neurons 5 min (but not 24 h) following training disrupted memory expression. Together these results indicate that the rules of neuronal allocation to an engram originally described in the lateral amygdala are followed in different brain regions including DG, and moreover, that disrupting the post-training activity pattern of these neurons prevents memory consolidation.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Medo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Optogenética , Transdução Genética
17.
Science ; 353(6297): 383-7, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27463673

RESUMO

Collections of cells called engrams are thought to represent memories. Although there has been progress in identifying and manipulating single engrams, little is known about how multiple engrams interact to influence memory. In lateral amygdala (LA), neurons with increased excitability during training outcompete their neighbors for allocation to an engram. We examined whether competition based on neuronal excitability also governs the interaction between engrams. Mice received two distinct fear conditioning events separated by different intervals. LA neuron excitability was optogenetically manipulated and revealed a transient competitive process that integrates memories for events occurring closely in time (coallocating overlapping populations of neurons to both engrams) and separates memories for events occurring at distal times (disallocating nonoverlapping populations to each engram).


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Neurônios/fisiologia , Tonsila do Cerebelo/citologia , Animais , Comunicação Celular , Condicionamento Psicológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
18.
eNeuro ; 2(3)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464982

RESUMO

The development, refinement, and use of techniques that allow high-throughput imaging of whole brains with cellular resolution will help us understand the complex functions of the brain. Such techniques are crucial for the analysis of complete neuronal morphology-anatomical and functional-connectivity, and repeated molecular phenotyping. CLARITY is a recently introduced technique that produces structurally intact, yet optically transparent tissue, which may be labeled and imaged without sectioning. However, the utility of this technique depends on several procedural variables during the process in which the light-scattering lipids in a tissue are replaced by a transparent hydrogel matrix. Here, we systematically varied a number of factors (including temperature, hydrogel composition, and polymerization conditions) to provide an optimized, highly replicable CLARITY procedure for clearing mouse brains. We found that for these preparations optimal tissue clearing requires electrophoresis (and cannot be achieved with passive clearing alone) for 5 d with a combination of 37 and 55°C temperature. Although this protocol is optimized for brains, we also show that it can be used to clear and analyze a variety of organs. Brain or other tissue prepared using this protocol is suitable for high-throughput imaging with confocal or single-plane illumination microscopy.

19.
Chem Biol ; 22(11): 1531-1539, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26590638

RESUMO

Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events.


Assuntos
Proteína de Ligação a CREB/antagonistas & inibidores , Optogenética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína de Ligação a CREB/metabolismo , Ácidos Cumáricos/química , DNA/química , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Humanos , Luz , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Propionatos , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo
20.
Neuron ; 83(3): 722-35, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25102562

RESUMO

Memories are thought to be sparsely encoded in neuronal networks, but little is known about why a given neuron is recruited or allocated to a particular memory trace. Previous research shows that in the lateral amygdala (LA), neurons with increased CREB are selectively recruited to a fear memory trace. CREB is a ubiquitous transcription factor implicated in many cellular processes. Which process mediates neuronal memory allocation? One hypothesis is that CREB increases neuronal excitability to bias neuronal recruitment, although this has not been shown experimentally. Here we use several methods to increase neuronal excitability and show this both biases recruitment into the memory trace and enhances memory formation. Moreover, artificial activation of these neurons alone is a sufficient retrieval cue for fear memory expression, showing that these neurons are critical components of the memory trace. These results indicate that neuronal memory allocation is based on relative neuronal excitability immediately before training.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Aprendizagem , Masculino , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA