Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 22(1): 52, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711160

RESUMO

BACKGROUND: Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS: The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS: The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS: FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.


Assuntos
Receptores de Activinas Tipo II , Oócitos , Animais , Feminino , Oócitos/efeitos dos fármacos , Camundongos , Receptores de Activinas Tipo II/metabolismo , Ovulação/efeitos dos fármacos , Gonadotropina Coriônica/farmacologia , Hormônio Foliculoestimulante/sangue , Oogênese/efeitos dos fármacos , Indução da Ovulação/métodos , Fragmentos Fc das Imunoglobulinas/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Gravidez , Ativinas
2.
Horm Behav ; 162: 105524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513526

RESUMO

Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.


Assuntos
Ansiedade , Inibidores da Aromatase , Letrozol , Aprendizagem em Labirinto , Camundongos Endogâmicos BALB C , Animais , Letrozol/farmacologia , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Ansiedade/tratamento farmacológico , Inibidores da Aromatase/farmacologia , Nitrilas/farmacologia , Triazóis/farmacologia
3.
Mol Hum Reprod ; 29(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37643633

RESUMO

While there is consensus that advanced maternal age (AMA) reduces oocyte yield and quality, the notion that high FSH reduces oocyte quality and causes aneuploidy remains controversial, perhaps due to difficulties controlling the confounding variables of age and FSH levels. Here, contributions of age and gonadotrophin elevation were separately controlled using a mouse model of human female reproductive aging. Ovulated oocytes were collected from young and midlife mice after 0-, 2.6-, or 17-day treatment with the FSH analog equine chorionic gonadotrophin (eCG), to model both exogenous FSH elevation within a single treatment cycle (as in controlled ovarian stimulation (COS)), and chronic endogenous FSH elevation during multiple cycles (as in diminished ovarian reserve). After 17-day eCG, fewer total oocytes/mouse are ovulated in midlife than young mice, and a precipitous decline in viable oocytes/mouse is observed in midlife but not young mice throughout eCG treatment. eCG is potently ootoxic to ovulatory oocytes and strongly induces chromosome- and spindle-misalignments within 2.6 days of eCG in midlife, but only after 17 days in young mice. These data indicate that AMA increases susceptibility to multiple adverse effects of elevated FSH activity in ovulated oocytes, including declines in total and viable oocytes/mouse, and induction of ootoxicity and aneuploidy. Two hypotheses are proposed for underlying causes of infertility in women. The FSH OOToxicity Hypothesis ('FOOT Hypothesis') posits that high FSH is ootoxic to ovulatory oocytes and that FSH ootoxicity is a root cause of low pregnancy success rates in naturally cycling women with high FSH and IUI patients undergoing COS. The '2-Hit Hypothesis' posits that AMA increases susceptibility to FSH-induced ootoxicity and aneuploidy.


Assuntos
Gonadotropinas , Oócitos , Gravidez , Feminino , Humanos , Animais , Cavalos , Idade Materna , Envelhecimento/fisiologia , Cromossomos , Hormônio Foliculoestimulante/farmacologia , Aneuploidia
4.
Stem Cells ; 35(3): 557-571, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27709799

RESUMO

Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells (NSCs) followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of NSC/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing ß-catenin. NF-α1 induced differentiation of NSCs to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway. Cultured E13.5 cortical stem cells from NF-α1-knockout mice showed decreased astrocyte numbers compared to wild-type mice, which was rescued by treatment with NF-α1. In vivo, immunocytochemistry of brain sections and Western blot analysis of neocortex of mice showed a gradual increase of NF-α1 expression from E14.5 to P1 and a surge of GFAP expression at P1, the time of increase in astrogenesis. Importantly, NF-α1-Knockout mice showed ∼49% fewer GFAP positive astrocytes in the neocortex compared to WT mice at P1. Thus, NF-α1 is critical for regulating antiproliferation and cell fate determination, through differentiating embryonic stem cells to GFAP-positive astrocytes for normal neurodevelopment. Stem Cells 2017;35:557-571.


Assuntos
Astrócitos/citologia , Carboxipeptidase H/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Fatores de Transcrição SOX9/metabolismo , Via de Sinalização Wnt , Animais , Astrócitos/metabolismo , Proliferação de Células , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/embriologia , Células-Tronco Neurais/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(11): 4465-70, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21368176

RESUMO

Binge drinking (blood-alcohol levels ≥ 0.08 g% in a 2-h period), is a significant public health burden in need of improved treatment. Gene therapy may offer beneficial alternatives to current psychosocial and pharmacotherapeutic interventions, but identification of the target genes is a clinical challenge. We report that a GABA(A) α2 siRNA vector (pHSVsiLA2) infused into the central nucleus of the amygdala (CeA) of alcohol-preferring (P) rats caused profound and selective reduction of binge drinking associated with inhibition of α2 expression, decreased GABA(A) receptor density, and inhibition of Toll-like receptor 4 (TLR4). CeA infusion of a TLR4 siRNA vector (pHSVsiLTLR4a) also inhibited binge drinking, but neither vector functioned when infused into the ventral pallidum. Binge drinking was inhibited by a GABA(A) α1 siRNA vector (pHSVsiLA1) infused into the ventral pallidum, unrelated to TLR4. The vectors did not alter sucrose intake and a scrambled siRNA vector was negative. The data indicate that GABA(A) α2-regulated TLR4 expression in the CeA contributes to binge drinking and may be a key early neuroadaptation in excessive drinking.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Tonsila do Cerebelo/metabolismo , Receptores de GABA-A/metabolismo , Receptor 4 Toll-Like/metabolismo , Tonsila do Cerebelo/patologia , Animais , Vetores Genéticos , Humanos , RNA Interferente Pequeno/metabolismo , Ratos
6.
Int J Neuropsychopharmacol ; 16(7): 1599-609, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23351612

RESUMO

Antipsychotic drugs are increasingly used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of early life antipsychotic drug (APD) treatment. Most APDs are potent antagonists or partial agonists of dopamine (DA) D2 receptors; atypical APDs also have multiple serotonergic activities. DA and serotonin regulate many neurodevelopmental processes. Thus, early life APD treatment can, potentially, perturb these processes, causing long-term behavioural and neurobiological sequelae. We treated adolescent, male rats with olanzapine (Ola) on post-natal days 28-49, under dosing conditions that approximate those employed therapeutically in humans. As adults, they exhibited enhanced conditioned place preference for amphetamine, as compared to vehicle-treated rats. In the nucleus accumbens core, DA D1 receptor binding was reduced, D2 binding was increased and DA release evoked by electrical stimulation of the ventral tegmental area was reduced. Thus, adolescent Ola treatment enduringly alters a key behavioural response to rewarding stimuli and modifies DAergic neurotransmission in the nucleus accumbens. The persistence of these changes suggests that even limited periods of early life Ola treatment may induce enduring changes in other reward-related behaviours and in behavioural and neurobiological responses to therapeutic and illicit psychotropic drugs. These results underscore the importance of improved understanding of the enduring sequelae of paediatric APD treatment as a basis for weighing the benefits and risks of adolescent APD therapy, especially prophylactic treatment in high-risk, asymptomatic patients.


Assuntos
Benzodiazepinas/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Recompensa , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Benzamidas/farmacocinética , Benzazepinas/farmacologia , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas de Dopamina/farmacocinética , Seguimentos , Masculino , Olanzapina , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Long-Evans , Trítio/farmacocinética
7.
Brain Struct Funct ; 227(3): 821-828, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34716471

RESUMO

Morphological and pharmacological studies indicate that hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons communicate with each other in rats and regulate a variety of hypothalamic and extrahypothalamic functions. Indeed, electron microscopic studies revealed NPY-immunoreactive (NPI-IR) synapses on ß-endorphin-IR neurons in the hypothalamus. However, no such connections have been reported in humans. Here, we studied the putative NPY-ß-endorphin associations with high-resolution light microscopic double-label immunocytochemistry in the human hypothalamus. The majority of ß-endorphin-IR perikarya appear to be innervated by abutting NPY-IR fibers in the infundibulum/median eminence, receiving more than 6 contacts (38% of the counted neurons) or three to six contacts (42% of the counted neurons). The rest of the ß-endorphin-IR neurons are lightly innervated by NPY fibers (14%, one-three contacts) or do not receive any detectable NPY-IR axon varicosities (6% of the counted neurons). Since ß-endorphin is cleaved from the proopiomelanocortin (POMC) precursor, the NPY-ß-endorphin connections also provide the foundation for NPY-α-MSH and NPY-ACTH connections and their subsequent physiology. The close anatomical connections between NPY-IR nerve terminals and ß-endorphin-IR neurons reported herein may represent functional synapses and provide the foundation for NPY-stimulated ß-endorphin release. By interacting with ß-endorphin, NPY may have a more widespread regulatory capacity than acting alone on different neurotransmitter systems.


Assuntos
Hipotálamo , Neuropeptídeo Y , beta-Endorfina , Animais , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Sinapses/metabolismo , beta-Endorfina/metabolismo
8.
J Histochem Cytochem ; 70(11-12): 759-765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514198

RESUMO

Immunocytochemical (ICC) techniques are frequently used in basic and clinical research. Here, we focus on the importance of using antisera/antibodies at optimal dilutions to achieve specificity and reduce costs. Unfortunately, the basic principle, the necessity to test method specificity of the staining by a series of increasing dilutions of primary antiserum/antibodies, is only occasionally seen in papers using ICC. Many researchers rely on the company's information or others' published data. In this study, we show examples with monoclonal antibodies used in the peroxidase-based ICC technique in mouse and guinea pig brain sections. We show images of ICC staining of phospho-S129 alpha-synuclein in A53T mice and NeuN in guinea pig brains and demonstrate that optimal staining with them can be achieved at least at two to three orders of magnitude higher dilutions than generally used in the literature. We strongly recommend that when antisera/antibodies are used for the first time in any laboratory, independent of what the manufacturer or vendor recommends or are found in the literature, a dilution curve should be set up to identify the optimal dilution. This practice provides not only the highest specificity but is also an economic approach.


Assuntos
Anticorpos Monoclonais , Peroxidase , Camundongos , Animais , Cobaias , Imuno-Histoquímica , Soros Imunes , Encéfalo
9.
Handb Clin Neurol ; 179: 67-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34225984

RESUMO

Neuropeptides participate in the regulation of numerous hypothalamic functions that are aimed for sustaining the homeostasis of the organism. These neuropeptides can act in two different levels. They can influence the release of hormones from the adenohypophysis via the portal circulation; in addition, they can act as neurotransmitters/neuromodulators modulating the functioning of numerous hypothalamic neurotransmitter systems. Indeed, most of these peptidergic systems form a complex network in the infundibular and periventricular nuclei of the human hypothalamus, communicating with each other by synaptic connections that may control fundamental physiologic functions. In the present chapter, we provide an overview of the distribution of neuropeptides in the human hypothalamus using immunohistochemistry and high-resolution, three-dimensional mapping.


Assuntos
Hipotálamo , Neuropeptídeos , Humanos , Hipotálamo/metabolismo , Imuno-Histoquímica , Neuropeptídeos/metabolismo , Neurotransmissores
10.
Brain Connect ; 11(6): 493-500, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33470178

RESUMO

Introduction: Substance P (SP) is a member of the tachykinin family. In the central nervous system, SP participates among others, in the regulation of pain, learning, memory, emotion, and sexual functions. In the periphery, SP affects the gastrointestinal, cardiovascular, and urinary systems. Galanin, similarly to SP, appears to be involved in wide range of physiologic functions, including cognition, waking and sleep, feeding, mood, blood pressure, reproduction, and development, where acts as a trophic factor. The similar distribution of SP-immunoreactive (SP-IR) fibers and galanin-IR perikarya in the human hypothalamus suggests functional interaction between these neuropeptides. Methods: We have utilized double-label immunohistochemistry to reveal these putative juxtapositions. Results: The majority of galanin-IR neurons receive contacting SP-IR fibers that often cover a significant area of the galaninergic perikarya forming multiple en passant type contacts. These SP-galanin juxtapositions are located mainly in the basal part of the infundibulum/median eminence, populating the basal periventricular region as well as the basal perifornical area. Discussion: The density and the morphology of these associations suggest that these contacts are functional synapses and therefore may represent the morphological substrate of the control of SP on multiple functions regulated/modulated by galanin. SP via galanin may modulate anterior pituitary hormone secretion, as contrary to SP, high density of galanin immunoreactivity is present in the median eminence, and by innervating galanin-IR neurons projecting to other parts of the brain, SP can modulate indirectly their activities. Impact statement The present study is the first describing juxtapositions between the substance P (SP)-immunoreactive (IR) and galanin-IR neurons in the human hypothalamus. These juxtapositions may be functional synapses and they may represent the morphological substrate of the control of SP on the galaninergic system. SP via galanin may modulate anterior pituitary hormone secretion, as contrary to SP, high density of galanin immunoreactivity is present in the median eminence. Galanin, released into the hypothalamo-hypophyseal circulation, can reach the anterior pituitary and function as a hypophysiotropic substance and regulates anterior pituitary hormone secretion. SP by innervating galanin-IR neurons, which project to other parts of the brain, can modulate indirectly their activities.


Assuntos
Encéfalo , Substância P , Encéfalo/metabolismo , Humanos , Hipotálamo/metabolismo , Imageamento por Ressonância Magnética , Neurônios , Substância P/metabolismo
11.
Brain Struct Funct ; 225(7): 2193-2201, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32737582

RESUMO

Thyrotropin-releasing hormone (TRH) has a critical role in the central regulation of thyroid-stimulating hormone (TSH) from the anterior pituitary, and subsequently, thyroid hormone secretion from the thyroid gland. In addition to its role in the regulation of HPT axis, TRH is a potent regulator of prolactin (PRL) secretion by stimulating PRL secretion either directly from lactotrophs or indirectly via its action on the tuberoinfundibular dopamine (TIDA) neurons. In rodents, the TRH neurons which regulate TSH and thyroid hormone secretion, called hypophysiotropic TRH neurons, are in the medial subdivision of the parvicellular paraventricular nucleus (PVN). In humans, the PVN also contains a large population of TRH neurons, especially in its medial part, but the location of hypophysiotropic TRH neurons is not yet known. In addition to regulating TSH and PRL secretion, TRH also functions as a neurotransmitter/neuromodulator. In rodents and teleosts, TRH axons densely innervate TIDA neurons to inhibit tyrosine hydroxylase (TH) biosynthesis, neuronal firing, and dopamine turnover which may contribute to increasing PRL secretion. No such connections have been reported in humans, although dopaminergic neurons express TRH receptors and TRH also regulates PRL secretion. The objectives of this study were to map TRH-IR and TH-IR structures in the human hypothalamus with single-label light microscopic immunocytochemistry and study their interaction with double-label light microscopic immunocytochemistry. We show that TRH-IR nerve terminals densely surround TH-IR neurons (perikarya and dendrites) in the infundibulum of the human hypothalamus. The micrographs illustrating these juxtapositions were taken by Olympus BX45 microscope equipped with a digital camera and with 100X oil immersion objective. Composite images were created from the consecutive micrographs if the neurons were larger than the frame of the camera, using Adobe Photoshop software. As no gaps between TRH-IR and TH-IR elements were seen, these contacts may be functional synapses by which TRH regulates the activity of dopaminergic neurons and subsequently TSH and PRL secretion.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Hipotálamo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Idoso , Axônios/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sinapses/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Brain Struct Funct ; 225(1): 241-248, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31807924

RESUMO

Substance P is an undecapeptide affecting the gastrointestinal, cardiovascular, and urinary systems. In the central nervous system, substance P participates in the regulation of pain, learning, memory, and sexual homeostasis. In addition to these effects, previous papers provided solid evidence that substance P exhibits regulatory effects on growth. Indeed, our previous study revealed that growth hormone-releasing hormone (GHRH) neurons appear to be densely innervated by substance P fibers in humans. Since growth hormone secretion is regulated by the antagonistic actions of both GHRH and somatostatin, in the present paper we have examined the possibility that SP may also affect growth via the somatostatinergic system. Therefore, we have studied the putative presence of juxtapositions between the substance P-immunoreactive (IR) and somatostatinergic systems utilizing double label immunohistochemistry combined with high magnification light microscopy with oil immersion objective. In the present study, we have revealed a dense network of substance P-IR axonal varicosities contacting the majority of somatostatin-IR neurons in the human hypothalamus. Somatostatinergic perikarya are often covered by these fiber varicosities that frequently form basket-like encasements with multiple en passant type contacts, particularly in the infundibular nucleus/median eminence and in the basal periventricular area of the tuberal region. In addition, numerous substance-P-somatostatinergic juxtapositions can be found in the basal perifornical zone of the tuberal area. If these contacts are indeed functional synapses, they may represent the morphological substrate of the control of substance P on growth. Indeed, the frequency and density of these juxtapositions indicate that in addition to the regulatory action of substance P on GHRH secretion, substance P also influences growth by regulating hypothalamic somatostatinergic system via direct synaptic contacts.


Assuntos
Hipotálamo/química , Hipotálamo/citologia , Neurônios/química , Neurônios/citologia , Terminações Pré-Sinápticas/química , Somatostatina/análise , Substância P/análise , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
13.
EC Gynaecol ; 9(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32743563

RESUMO

Menopause affects the quality of life of millions of women. With modern lifespan the postmenopausal attenuation of circulating estrogen levels can negatively impact a women's life for 30-40 years. The major hypoestrogenic consequence is hot flushes but decline in cognitive function, sleep disorders, depression/anxiety, cardiovascular disease, and osteoporosis are also characteristic for the menopause. Current treatments of hot flushes include estrogen therapy alone or in combination with progestins, soy products, and serotonin and norepinephrine reuptake inhibitors. However, with the exception of estrogens, none of these have satisfactory efficacy. But estrogens come with the unwanted side effects in the periphery, including stimulation of the uterus and breast leading to elevated cancer risk. Therefore, a tremendous effort has been devoted to developing safer therapies and the research has utilized classic rodent models of hot flush with considerable limitations. As hot flushes are primate-specific symptoms, the development of a non-invasive primate hot flush model would have a tremendous impact on drug development. Therefore, our aim was to develop such a non-human primate (NHP) model a hot flush that both recapitulates flushes women experience and is minimally invasive. We investigated if recent developments in thermal imaging have made it possible to accurately monitor skin temperature via camera imaging. In this study, the skin temperature of an ovariectomized rhesus monkey was measured continuously with an infrared camera in a freely moving animal over long time period. Following mapping skin temperatures of several areas of the neck and face we found that the nose of the monkeys showed that largest changes in skin temperature. In the ovariectomized monkey the temperature of the skin on the nose shows up to 9 °C elevations representing hot flushes. In the untreated monkey, hot flushes occurred more frequently in late afternoon/early evening hours than in the morning and last for several minutes. We observed 58 flushes in the 64 evenings of observation. The average number of hot flushes was 0.51 per evening. Oral administration of biotin (niacin) for seven days exaggerated the number of hot flushes to 2.43 per evening. Oral treatment with estradiol benzoate prevented hot flushes and only 2 flushes were detected in the 12 evenings after treatment, averaging 0.17 per evening. The development of this NHP model of hot flush provides great hope for utilizing it for future drug development and mechanistic studied.

14.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531919

RESUMO

Hot flushes are best-known for affecting menopausal women, but men who undergo life-saving castration due to androgen-sensitive prostate cancer also suffer from these vasomotor symptoms. Estrogen deficiency in these patients is a direct consequence of androgen deprivation, because estrogens (notably 17ß-estradiol, E2) are produced from testosterone. Although estrogens alleviate hot flushes in these patients, they also cause adverse systemic side effects. Because only estrogens can provide mitigation of hot flushes on the basis of current clinical practices, there is an unmet need for an effective and safe pharmacotherapeutic intervention that would also greatly enhance patient adherence. To this end, we evaluated treatment of orchidectomized (ORDX) rats with 10ß, 17ß-dihydroxyestra-1,4-dien-3-one (DHED), a brain-selective bioprecursor prodrug of E2. A pilot pharmacokinetic study using oral administration of DHED to these animals revealed the formation of E2 in the brain without the appearance of the hormone in the circulation. Therefore, DHED treatment alleviated androgen deprivation-associated hot flushes without peripheral impact in the ORDX rat model. Concomitantly, we showed that DHED-derived E2 induced progesterone receptor gene expression in the hypothalamus without stimulating galanin expression in the anterior pituitary, further indicating the lack of systemic estrogen exposure upon oral treatment with DHED.

15.
Biol Reprod ; 81(2): 406-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19403930

RESUMO

The foundation for development of the male reproduction system occurs in utero, but relatively little is known about the regulation of primate fetal testis maturation. Our laboratories have shown that estrogen regulates key aspects of the physiology of pregnancy and fetal development. Therefore, in the present study, we characterized and quantified germ cells and Sertoli cells in the fetal baboon testis in late normal gestation (i.e., Day 165; term is 184 days) and in baboons administered the aromatase inhibitor letrozole throughout the second half of gestation to assess the impact of endogenous estrogen on fetal testis development. In untreated baboons, the seminiferous cords were comprised of undifferentiated (i.e., type A) spermatogonia classified by their morphology as dark (Ad) or pale (Ap), gonocytes (precursors of type A spermatogonia), unidentified cells (UI), and Sertoli cells. In letrozole-treated baboons, serum estradiol levels were decreased by 95%. The number per milligram of fetal testis (x10(4)) of Ad spermatogonia (0.42 +/- 0.11) was 45% lower (P = 0.03), and that of gonocytes (0.58 +/- 0.06) and UI (0.45 +/- 0.12) was twofold greater (P < 0.01 and P = 0.06, respectively), than in untreated baboons. Moreover, in the seminiferous cords of estrogen-deprived baboons, the basement membrane appeared fragmented, the germ cells and Sertoli cells appeared disorganized, and vacuoles were present. We conclude that endogenous estrogen promotes fetal testis development and that the changes in the germ cell population in the estrogen-deprived baboon fetus may impair spermatogenesis and fertility in adulthood.


Assuntos
Estrogênios/fisiologia , Papio anubis/embriologia , Túbulos Seminíferos/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Testículo/embriologia , Análise de Variância , Animais , Inibidores da Aromatase/farmacologia , Membrana Basal/citologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/embriologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estradiol/sangue , Estrogênios/deficiência , Feminino , Peso Fetal/efeitos dos fármacos , Hormônio Foliculoestimulante/sangue , Letrozol , Hormônio Luteinizante/sangue , Masculino , Nitrilas/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Estatísticas não Paramétricas , Testículo/efeitos dos fármacos , Testículo/enzimologia , Testículo/ultraestrutura , Testosterona/sangue , Triazóis/farmacologia
16.
Neurochem Int ; 54(2): 119-34, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19070637

RESUMO

The long-term cellular effects of estrogens are mediated by nuclear estrogen receptors which act as transcription factors to regulate gene expression. Hypothalamic targets of estrogen action include luteinizing hormone-releasing hormone-secreting neurons controlling reproduction in vertebrates. Microarray analysis and qRT-PCR studies were performed on GT1-7, immortalized LHRH neurons after 17beta-estradiol treatment to reveal the nature of estrogen-regulated genes and the time course of changes in their expression profile. More than 1000 transcripts showed robust responses to estrogen treatment and the majority of responding genes were up-regulated. Early-responding genes showed altered expression 0.5-2h after estrogen exposure, whereas late-responding genes changed after 24-48h treatment. Up-regulated genes encoded transcription factors, molecules involved in cellular movement, cell death, immune response, neurotransmitter and neuropeptide receptors, ion channels and transporters. The 17beta-estradiol modulation of 12 genes - representing characteristic gene clusters - has been confirmed by qRT-PCR. Our studies highlighted diverse gene networks, cell regulatory mechanisms and metabolic pathways through which estrogen may alter gene expression in immortalized LHRH neurons. The findings also support the notion that genomic effects of estrogen targeting in vivo directly the LHRH neuronal network of mammals play an important role in the central feedback regulation of the reproductive axis by estrogen.


Assuntos
Estradiol/farmacologia , Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/biossíntese , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Humanos , Canais Iônicos/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
17.
Brain Struct Funct ; 224(5): 1971-1974, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972477

RESUMO

Post mortem examination of the hypothalamus of a 79-year-old woman, deceased in cardiac arrest without recorded neurological symptoms, revealed well-defined spherical protrusions located rostro-laterally to the mammillary bodies that appear to be regular size when compared to normal. Cytoarchitectonically, these accessory mammillary bodies are formed by the enlarged lateral mammillary nucleus that is normally a thin shell over the medial. The mammillary nuclei appear to function synergistically in memory formation in rats; however, the functional consequences of the present variation are difficult to interpret due to lack of human data. Most importantly, in addition to the possible functional consequences, lateral mammillary bodies can be falsely identified as various neuropathological processes of the basal diencephalon including gliomas; therefore, it is extremely important to disseminate this unique morphological variant among clinicians.


Assuntos
Hipotálamo/anatomia & histologia , Corpos Mamilares/anatomia & histologia , Vias Neurais/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Autopsia/métodos , Feminino , Humanos , Região Hipotalâmica Lateral/anatomia & histologia
18.
Brain Struct Funct ; 224(6): 2079-2085, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31147779

RESUMO

Substance P is an eleven-amino acid neuropeptide (undecapeptide) with multiple effects on the gastrointestinal, cardiovascular, and urinary systems as well as complex central nervous system functions such as pain, learning, memory, and sexual homeostasis. Previous studies also revealed that substance P exhibits regulatory effects on growth possibly via influencing hypothalamic GHRH release in human. However, the morphological substrate of this phenomenon has not been elucidated yet. In the present study, we examined the putative presence of juxtapositions between the substance P- and GHRH-immunoreactive (IR) systems using double-label immunocytochemistry. High-magnification light microscopy with oil immersion was used to identify putative juxtapositions between these systems. Our studies revealed substance P-IR fiber network abutting on the surface of the majority of GHRH-immunoreactive neurons in the human hypothalamus. These fiber varicosities often cover a significant surface area on the GHRH-IR neurons, forming basket-like encasements with multiple en passant type contacts. The majority of these densely innervated GHRH-IR neurons were found in the infundibular nucleus/median eminence, while substance P-IR fibers often abut on the GHRH-IR neurons in the periventricular zone and basal perifornical area of the tuberal region and in the dorsomedial subdivision of the ventromedial nucleus. The posterior hypothalamus did not contain observable substance P-GHRH associations. The density and the morphology of these intimate associations suggest that substance P influences growth by regulating hypothalamic GHRH release by direct synaptic contacts.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Substância P/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diencéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Eminência Mediana/metabolismo
19.
Neuropsychopharmacology ; 43(2): 313-324, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28741626

RESUMO

Maladaptive decision making is associated with several neuropsychiatric disorders, including problem gambling and suicidal behavior. The prevalence of these disorders is higher in men vs women, suggesting gender-dependent regulation of their pathophysiology underpinnings. We assessed sex differences in decision making using the rat version of the Iowa gambling task. Female rats identified the most optimal choice from session 1, whereas male rats from session 5. Male, but not female rats, progressively improved their advantageous option responding and surpassed females. Estrus cycle phase did not affect decision making. To test whether pharmacological manipulations targeting the dopaminergic and stress systems affect decision making in a sex-dependent manner, male and female rats received injections of a dopamine D2 receptor (D2R) antagonist (eticlopride), D2R agonist (quinpirole), corticotropin-releasing factor 1 (CRF1) antagonist (antalarmin), and α2-adrenergic receptor antagonist (yohimbine; used as a pharmacological stressor). Alterations in mRNA levels of D2R and CRF1 were also assessed. Eticlopride decreased advantageous responding in male, but not female rats, whereas quinpirole decreased advantageous responding specifically in females. Yohimbine dose-dependently decreased advantageous responding in female rats, whereas decreased advantageous responding was only observed at higher doses in males. Antalarmin increased optimal choice responding only in female rats. Higher Drd2 and Crhr1 expression in the amygdala were observed in female vs male rats. Higher amygdalar Crhr1 expression was negatively correlated with advantageous responding specifically in females. This study demonstrates the relevance of dopaminergic- and stress-dependent sex differences to maladaptive decision making.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Tonsila do Cerebelo/metabolismo , Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Agonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Dopamina D2/metabolismo , Caracteres Sexuais , Antagonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Tomada de Decisões/efeitos dos fármacos , Agonistas de Dopamina/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Feminino , Masculino , Pirimidinas/farmacologia , Pirróis/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Long-Evans , Receptores de Dopamina D2/agonistas , Salicilamidas/farmacologia , Ioimbina/farmacologia
20.
Endocrinology ; 148(3): 1376-83, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17122073

RESUMO

Hot flushes and night sweats, referred to as vasomotor symptoms (VMS), are presumed to be a result of declining hormone levels and are the principal menopausal symptoms for which women seek medical treatment. To date, estrogens and/or some progestins are the most effective therapeutics for alleviating VMS; however, these therapies may not be appropriate for all women. Therefore, nonhormonal therapies are being evaluated. The present study investigated a new reuptake inhibitor, desvenlafaxine succinate (DVS), in animal models of temperature dysfunction. Both models used are based on measuring changes in tail-skin temperature (TST) in ovariectomized (OVX) rats. The first relies on naloxone-induced withdrawal in morphine-dependent (MD) OVX rats, resulting in an acute rise in TST. The second depends on an OVX-induced loss of TST decreases during the dark phase as measured by telemetry. An initial evaluation demonstrated abatement of the rise in TST with long-term administration of ethinyl estradiol or with a single oral dose of DVS (130 mg/kg) in the MD model. Further evaluation showed that orally administered DVS acutely and dose dependently (10-100 mg/kg) abated a naloxone-induced rise in TST of MD rats and alleviated OVX-induced temperature dysfunction in the telemetry model. Oral administration of DVS to OVX rats caused significant increases in serotonin and norepinephrine levels in the preoptic area of the hypothalamus, a key region of the brain involved in temperature regulation. These preclinical studies provide evidence that DVS directly impacts thermoregulatory dysfunction in OVX rats and may have utility in alleviating VMS associated with menopause.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Cicloexanóis/farmacologia , Ovariectomia , Administração Oral , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Cicloexanóis/administração & dosagem , Succinato de Desvenlafaxina , Avaliação Pré-Clínica de Medicamentos , Etinilestradiol/farmacologia , Feminino , Modelos Animais , Dependência de Morfina/patologia , Norepinefrina/antagonistas & inibidores , Área Pré-Óptica/química , Área Pré-Óptica/efeitos dos fármacos , Ratos , Antagonistas da Serotonina/farmacologia , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA