Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(10): 4252-4267, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34021759

RESUMO

Transposable elements (TEs) are ubiquitous and mobile repeated sequences. They are major determinants of host fitness. Here, we characterized the TE content of the spotted wing fly Drosophila suzukii. Using a recently improved genome assembly, we reconstructed TE sequences de novo and found that TEs occupy 47% of the genome and are mostly located in gene-poor regions. The majority of TE insertions segregate at low frequencies, indicating a recent and probably ongoing TE activity. To explore TE dynamics in the context of biological invasions, we studied the variation of TE abundance in genomic data from 16 invasive and six native populations of D. suzukii. We found a large increase of the TE load in invasive populations correlated with a reduced Watterson estimate of genetic diversity θw^ a proxy of effective population size. We did not find any correlation between TE contents and bioclimatic variables, indicating a minor effect of environmentally induced TE activity. A genome-wide association study revealed that ca. 2,000 genomic regions are associated with TE abundance. We did not find, however, any evidence in such regions of an enrichment for genes known to interact with TE activity (e.g., transcription factor encoding genes or genes of the piRNA pathway). Finally, the study of TE insertion frequencies revealed 15 putatively adaptive TE insertions, six of them being likely associated with the recent invasion history of the species.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Evolução Molecular , Estudo de Associação Genômica Ampla , RNA Interferente Pequeno/genética
2.
Sci Rep ; 11(1): 9844, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972659

RESUMO

Interspecific hybridization is a stressful condition that can lead to sterility and/or inviability through improper gene regulation in Drosophila species with a high divergence time. However, the extent of these abnormalities in hybrids of recently diverging species is not well known. Some studies have shown that in Drosophila, the mechanisms of postzygotic isolation may evolve more rapidly in males than in females and that the degree of viability and sterility is associated with the genetic distance between species. Here, we used transcriptomic comparisons between two Drosophila mojavensis subspecies and D. arizonae (repleta group, Drosophila) and identified greater differential gene expression in testes than in ovaries. We tested the hypothesis that the severity of the interspecies hybrid phenotype is associated with the degree of gene misregulation. We showed limited gene misregulation in fertile females and an increase in the amount of misregulation in males with more severe sterile phenotypes (motile vs. amotile sperm). In addition, for these hybrids, we identified candidate genes that were mostly associated with spermatogenesis dysfunction.


Assuntos
Drosophila/fisiologia , Hibridização Genética , Infertilidade Masculina/veterinária , Espermatogênese/genética , Testículo/patologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especiação Genética , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Ovário/patologia , Isolamento Reprodutivo , Fatores Sexuais , Motilidade dos Espermatozoides/genética
3.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505904

RESUMO

Adaptation to rapid environmental changes must occur within a short-time scale. In this context, studies of invasive species may provide insights into the underlying mechanisms of rapid adaptation as these species have repeatedly encountered and adapted to novel environmental conditions. We investigated how invasive and noninvasive genotypes of Drosophila suzukii deal with oxidative stress at the phenotypic and molecular levels. We also studied the impact of transposable element (TE) insertions on the gene expression in response to stress. Our results show that flies from invasive areas (France and the United States) live longer in natural conditions than the ones from native Japanese areas. As expected, lifespan for all genotypes was significantly reduced following exposure to paraquat, but this reduction varied among genotypes (genotype-by-environment interaction) with invasive genotypes appearing more affected by exposure than noninvasive ones. A transcriptomic analysis of genotypes upon paraquat treatment detected many genes differentially expressed (DE). Although a small core set of genes were DE in all genotypes following paraquat exposure, much of the response of each genotype was unique. Moreover, we showed that TEs were not activated after oxidative stress and DE genes were significantly depleted of TEs. In conclusion, it is likely that transcriptomic changes are involved in the rapid adaptation to local environments. We provide new evidence that in the decade since the invasion from Asia, the sampled genotypes in Europe and the United States of D. suzukii diverged from the ones from the native area regarding their phenotypic and genomic response to oxidative stress.


Assuntos
Espécies Introduzidas , Transcriptoma , Animais , Elementos de DNA Transponíveis , Drosophila/genética , Geografia
4.
Mob DNA ; 11: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636946

RESUMO

Drosophila has been studied as a biological model for many years and many discoveries in biology rely on this species. Research on transposable elements (TEs) is not an exception. Drosophila has contributed significantly to our knowledge on the mechanisms of transposition and their regulation, but above all, it was one of the first organisms on which genetic and genomic studies of populations were done. In this review article, in a very broad way, we will approach the TEs of Drosophila with a historical hindsight as well as recent discoveries in the field.

5.
Cells ; 9(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722451

RESUMO

Transposable elements (TEs) are the main components of genomes. However, due to their repetitive nature, they are very difficult to study using data obtained with short-read sequencing technologies. Here, we describe an efficient pipeline to accurately recover TE insertion (TEI) sites and sequences from long reads obtained by Oxford Nanopore Technology (ONT) sequencing. With this pipeline, we could precisely describe the landscapes of the most recent TEIs in wild-type strains of Drosophila melanogaster and Drosophila simulans. Their comparison suggests that this subset of TE sequences is more similar than previously thought in these two species. The chromosome assemblies obtained using this pipeline also allowed recovering piRNA cluster sequences, which was impossible using short-read sequencing. Finally, we used our pipeline to analyze ONT sequencing data from a D. melanogaster unstable line in which LTR transposition was derepressed for 73 successive generations. We could rely on single reads to identify new insertions with intact target site duplications. Moreover, the detailed analysis of TEIs in the wild-type strains and the unstable line did not support the trap model claiming that piRNA clusters are hotspots of TE insertions.


Assuntos
Elementos de DNA Transponíveis/imunologia , Drosophila melanogaster/imunologia , Drosophila/imunologia , Nanoporos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA