Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioconjug Chem ; 27(11): 2695-2706, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27731976

RESUMO

Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.


Assuntos
Glutamina/química , Interferon-alfa/química , Lisina/química , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Sítios de Ligação , Humanos , Interferon alfa-2 , Interferon-alfa/farmacocinética , Interferon-alfa/farmacologia , Modelos Moleculares , Peso Molecular , Polietilenoglicóis/química , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Especificidade por Substrato , Vesiculovirus/efeitos dos fármacos
2.
Biomacromolecules ; 16(2): 550-7, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25543760

RESUMO

The aim of this work was to evaluate the potential of INVITE-based nanomicelles, an amphiphilic polymer constituted by inulin (INU) and vitamin E (VITE), as a platform for improving the biopharmaceutical properties of hydrophobic drugs. For this purpose, curcumin was selected as a model and curcumin-INVITE nanomicelles were prepared. This drug delivery system was characterized both in vitro for what concerns the physicochemical properties, blood compatibility, and cellular uptake, and in vivo for the evaluation of the pharmacokinetic profile. It was found that these nanomicelles released curcumin in a controlled manner, and they were able to penetrate cellular membrane. Moreover, they showed an improved pharmacokinetic profile after intravenous administration. In conclusion, INVITE micelles might constitute promising nanocarriers for improving the biopharmaceutical performance of hydrophobic drugs.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Inulina/administração & dosagem , Micelas , Nanopartículas/administração & dosagem , alfa-Tocoferol/administração & dosagem , Administração Intravenosa , Animais , Curcumina/metabolismo , Portadores de Fármacos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Células HEK293 , Humanos , Inulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , alfa-Tocoferol/metabolismo
3.
Bioconjug Chem ; 24(3): 456-63, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23432141

RESUMO

Several strategies for site-specific PEGylation have been successfully exploited to conjugate poly(ethylene glycol) (PEG) to pharmaceutical proteins. The advantages sought are those of improving efficacy and increasing the half-life of conjugated proteins while achieving a higher degree of homogeneity. Recombinant human growth hormone (hGH) was thus PEGylated exploiting two site-specific strategies: N-terminal PEGylation using the PEG20 kDa-aldehyde polymer and microbial transglutaminase (mTGase) mediated enzymatic PEGylation using PEG20 kDa-NH2. N-Terminal PEGylation of hGH was carried out by covalent attachment of PEG to the α-amine residue of Phe1 that yielded the monoconjugate PEG-Nter-hGH with a mass of 44152.2 Da, as measured by MALDI-TOF mass spectrometry. The mTGase mediated PEGylation, performed in a water/ethanol solution mixture, allowed a PEG coupling reaction only at the level of hGH Gln141, yielding the single monoconjugate PEG-Gln141-hGH with a mass of 44064.9 Da. Circular dichroism studies showed that both conjugation strategies preserved the native-like secondary structures of hGH. It is vital to maintain the structural integrity of hGH if PEGylated hGH is to be used in therapeutic applications. As expected, the pharmacokinetic profile in rats of PEG-Nter-hGH and PEG-Gln141-hGH revealed a significant increase in systemic exposure with respect to unmodified hGH. The conjugates showed a half-life increase of 4.5-fold with respect to hGH. These results demonstrate that both chemical and enzymatic site-selective PEGylation of hGH generates conjugates with a prolonged half-life.


Assuntos
Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Feminino , Hormônio do Crescimento Humano/genética , Humanos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
4.
Bioconjug Chem ; 22(5): 976-86, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21452890

RESUMO

Polyoxazoline polymers with methyl (PMOZ), ethyl (PEOZ), and propyl (PPOZ) side chains were prepared by the living cationic polymerization method and purified by ion-exchange chromatography. The following properties of polyoxazoline (POZ) were measured: apparent hydrodynamic radius by aqueous size-exclusion chromatography, relative lipophilicity by reverse-phase chromatography, and viscosity by cone-plate viscometry. The PEOZ polymers of different molecular weights were first functionalized and then conjugated to model biomolecules such as bovine serum albumin, catalase, ribonuclease, uricase, and insulin. The conjugates of catalase, uricase, and ribonuclease were tested for in vitro activity using substrate-specific reaction methods. The conjugates of insulin were tested for glucose lowering activity by injection to naïve Sprague-Dawley rats. The conjugates of BSA were injected into New Zealand white rabbits and serum samples were collected periodically and tested for antibodies to BSA. The safety of POZ was also determined by acute and chronic dosing to rats. The results showed that linear polymers of POZ with molecular weights of 1 to 40 kDa can easily be made with polydispersity values below 1.10. Chromatography results showed that PMOZ and PEOZ have a hydrodynamic volume slightly lower than PEG; PEOZ is more lipophilic than PMOZ and PEG; and PEOZ is significantly less viscous than PEG especially at the higher molecular weights. When PEOZ was attached to the enzymes catalase, ribonuclease, and uricase, the in vitro activity of the resultant bioconjugates depended on the extent of protein modification. POZ conjugates of insulin lowered blood glucose levels for a period of 8 h when compared to 2 h for insulin alone. PEOZ, like PEG, was also able to successfully attenuate the immunogenic properties of BSA. The POZ polymers (10 and 20 kDa) are safe when administered intravenously to rats, and the maximum tolerated dose (MTD) was greater than 2 g/kg. Blood counts, serum chemistry, organ weights, and the histopathology of key organs were normal. These results conclude that POZ has the desired drug delivery properties for a new biopolymer.


Assuntos
Sistemas de Liberação de Medicamentos , Poliaminas/farmacocinética , Amidas/síntese química , Amidas/química , Amidas/farmacocinética , Animais , Bovinos , Cromatografia por Troca Iônica , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Feminino , Insulina/química , Masculino , Camundongos , Modelos Animais , Estrutura Molecular , Poliaminas/síntese química , Poliaminas/química , Proteínas/química , Coelhos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
5.
Mol Pharm ; 8(4): 1063-72, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21608527

RESUMO

Poly(ethylene glycol) (PEG) is the most popular polymer for protein conjugation, but its potential as carrier of low molecular weight drugs has been limited by the intrinsic low loading, owing to its chemical structure. In fact, only the two end chain groups of PEG can be modified and exploited for drug coupling. We have demonstrated that by synthesizing a dendrimer structure at the polymer end chains, it is possible to increase the drug payload and overcome this limitation. Furthermore, this approach can be improved by using heterobifunctional PEG. These polymers allow the precise linking of two different drugs, or a drug and a targeting agent, on the same polymeric chain. Heterobifunctional PEG-dendrimers have been obtained with defined chemical structures leading to their attractive use as drug delivery systems. In fact, they offer a double benefit; first, the possibility to choose the best drug/targeting agent ratio, and second, the separation of the two functions, activity and targeting, which are coupled at the opposite polymer end chains. In this study, we investigated the role of a PEG-dendrimer, H(2)N-PEG-dendrimer-(COOH)(4), as carrier for a combination of paclitaxel (PTX) and alendronate (ALN). PTX is a potent anticancer drug that is affected by severe side effects originating from both the drug itself and its solubilizing formulation, Cremophor EL. ALN is an aminobiphosphonate used for the treatment of osteoporosis and bone metastases as well as a bone-targeting moiety. The PTX-PEG-ALN conjugate was designed to exploit active targeting by the ALN molecule and passive targeting through the enhanced permeability and retention (EPR) effect. Our conjugate demonstrated a great binding affinity to the bone mineral hydroxyapatite in vitro and an IC(50) comparable to that of the free drugs combination in human adenocarcinoma of the prostate (PC3) cells. The PTX-PEG-ALN conjugate exhibited an improved pharmacokinetic profile compared with the free drugs owed to the marked increase in their half-life. In addition, PTX-PEG-ALN could be solubilized directly in physiological solutions without the need for Cremophor EL. The data presented in this manuscript encourage further investigations on the potential of PTX-PEG-ALN as treatment for cancer bone metastases.


Assuntos
Alendronato/química , Alendronato/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Dendrímeros/química , Paclitaxel/química , Paclitaxel/farmacologia , Polietilenoglicóis/química , Alendronato/farmacocinética , Alendronato/uso terapêutico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Feminino , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Ratos
6.
Pharm Res ; 28(10): 2412-21, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21611874

RESUMO

PURPOSE: A new approach for non-covalent protein PEGylation is translated from immobilized metal ion affinity chromatography, and based on metal coordination bonds between a chelating agent linked to PEG, nitrilotriacetic acid (NTA), and the ring nitrogen of histidines in a protein. METHODS: PEG-NTA conjugates were synthesized differing in the number of NTA units and in the polymer structure. Three derivatives were investigated in association experiments with five model proteins. The most promising complex, PEG8-(NTA)(8)-Cu(2+)-G-CSF (granulocyte colony stimulating factor), was thoroughly characterized and the pharmacokinetic profile was evaluated in rats. RESULTS: The experiments demonstrated that only PEG8-(NTA)(8), bearing eight NTA molecules on flexible PEG arms, associated strongly with those proteins having several histidines. The protein secondary structure was not affected in the complex. PEG8-(NTA)(8)-Cu(2+)-G-CSF showed a K (D) of 4.7 nM, as determined by surface plasmon resonance, but the association was not stable in vivo. CONCLUSIONS: PEG8-(NTA)(8) is the first derivative able to associate with native proteins and form soluble complexes with a nanomolar K (D). The study highlights the need of a multivalent and flexible coordination and encourages further investigations to increase the stability of PEG8-(NTA)(8) complexes in vivo either through the use of protein mutants or His-tag proteins.


Assuntos
Quelantes/química , Complexos de Coordenação/síntese química , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/química , Polietilenoglicóis/química , Proteínas/química , Animais , Quelantes/síntese química , Quelantes/farmacocinética , Cromatografia de Afinidade/métodos , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Histidina/química , Masculino , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/farmacocinética , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície/métodos
7.
Bioconjug Chem ; 20(2): 384-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19186937

RESUMO

Poly(ethylene glycol) (PEG) has been widely used to prolong the residence time of proteins in blood and to decrease their immunogenicity and antigenicity. A drawback of this polymer lies in its polydispersity that makes difficult the identification of the sites of protein modification. This is a mandatory requirement if a PEGylated protein should be approved as a drug. Here, a fast and reliable method is proposed to characterize proteins conjugated at the level of glutamine (Gln) residues using microbial transglutaminase (TGase). The novelty resides in the use of a monodisperse Boc-PEG-NH(2) for the derivatization that allows the direct identification of the sites of PEGylation by electrospray ionization mass spectrometry (ESI-MS). The procedure has been tested on three model proteins, namely, human granulocyte colony-stimulating factor, human growth hormone, and horse heart apomyoglobin. The Gln residues linked to the polymer chain were easily identified by ESI-MS and tandem MS analyses, demonstrating the advantage of using a monodisperse polymer in combination with mass spectrometry for an easy characterization of conjugated proteins. Interestingly, the PEGylation reaction led to the production only of mono- and bis-derivative products, indicating that the TGase-mediated PEGylation can be extremely selective and thus very useful for the derivatization of protein drugs.


Assuntos
Polietilenoglicóis/química , Proteínas/química , Proteínas/metabolismo , Streptomyces/enzimologia , Transglutaminases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Polietilenoglicóis/metabolismo , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
8.
Adv Drug Deliv Rev ; 60(1): 13-28, 2008 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17916398

RESUMO

Transglutaminase (TGase, E.C. 2.3.2.13) catalyzes acyl transfer reactions between the gamma-carboxamide groups of protein-bound glutamine (Gln) residues, which serve as acyl donors, and primary amines, resulting in the formation of new gamma-amides of glutamic acid and ammonia. By using an amino-derivative of poly(ethylene glycol) (PEG-NH(2)) as substrate for the enzymatic reaction with TGase it is possible to covalently bind the PEG polymer to proteins of pharmaceutical interest. In our laboratory, we have conducted experiments aimed to modify proteins of known structure using TGase and, surprisingly, we were able to obtain site-specific modification or PEGylation of protein-bound Gln residue(s) in the protein substrates. For example, in apomyoglobin (apoMb, myoglobin devoid of heme) only Gln91 was modified and in human growth hormone only Gln40 and Gln141, despite these proteins having many more Gln residues. Moreover, we noticed that these proteins suffered highly selective limited proteolysis phenomena at the same chain regions being attacked by TGase. We have analysed also the results of other published experiments of TGase-mediated modification or PEGylation of several proteins in terms of protein structure and dynamics, among them alpha-lactalbumin and interleukin-2, as well as disordered proteins. A noteworthy correlation was observed between chain regions of high temperature factor (B-factor) determined crystallographically and sites of TGase attack and limited proteolysis, thus emphasizing the role of chain mobility or local unfolding in dictating site-specific enzymatic modification. We propose that enhanced chain flexibility favors limited enzymatic reactions on polypeptide substrates by TGases and proteases, as well as by other enzymes involved in a number of site-specific post-translational modifications of proteins, such as phosphorylation and glycosylation. Therefore, it is possible to predict the site(s) of TGase-mediated modification and PEGylation of a therapeutic protein on the basis of its structure and dynamics and, consequently, the likely effects of modifications on the functional properties of the protein.


Assuntos
Preparações Farmacêuticas/metabolismo , Polietilenoglicóis/química , Proteínas/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Humanos , Dados de Sequência Molecular , Preparações Farmacêuticas/química , Modificação Traducional de Proteínas , Proteínas/química , Proteínas/genética , Transglutaminases/química
9.
Bioconjug Chem ; 19(12): 2427-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19053302

RESUMO

A new PEGylating agent, PEG-betaAla-NHCO-OSu, has been studied for protein amino conjugation using human growth hormone (hGH) and granulocyte colony stimulating factor (G-CSF) as model therapeutic proteins. This new activated PEG possesses a convenient property for protein modification when compared to other activated carboxylate PEGs, namely, lower reactivity. When this polymer reacts with a protein, its features lead to fewer PEG-protein conjugate isomers because it preferentially binds the most nucleophilic and exposed amines. Furthermore, the conjugates obtained with PEG-betaAla-NHCO-OSu showed an interesting slow release of polymer chains upon incubation under physiological conditions. Further investigations determined that the PEG chains released are those coupled to histidine residues, and this finally yields less PEGylated species as well as free protein. This release allows a partial recovery of protein activity that is often remarkably and permanently reduced after stable PEGylation, and it occurs in water or blood without the involvement of enzymes. On the other hand, the rate of PEG release, tuned by the chemical structure of this new PEGylating agent, is not too high, and therefore, the achievement of a desired prolongation of protein half-life in vivo is still feasible. The pharmacokinetics of hGH-PEG6k-betaAla conjugate was compared to that of native hGH in rats and monkeys, and the blood residence times were increased by 10- and 7-fold, respectively. The conjugate potency was evaluated in hypophysectomized rats demonstrating a superior pharmacodynamic profile with respect to native hGH.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacocinética , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Polietilenoglicóis/química , Succinimidas/química , Sequência de Aminoácidos , Animais , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/farmacologia , Meia-Vida , Hormônio do Crescimento Humano/administração & dosagem , Hormônio do Crescimento Humano/farmacologia , Humanos , Injeções Subcutâneas , Macaca mulatta , Masculino , Polietilenoglicóis/síntese química , Ratos , Succinimidas/síntese química , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
10.
BioDrugs ; 22(5): 315-29, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18778113

RESUMO

The term PEGylation describes the modification of biological molecules by covalent conjugation with polyethylene glycol (PEG), a non-toxic, non-immunogenic polymer, and is used as a strategy to overcome disadvantages associated with some biopharmaceuticals. PEGylation changes the physical and chemical properties of the biomedical molecule, such as its conformation, electrostatic binding, and hydrophobicity, and results in an improvement in the pharmacokinetic behavior of the drug. In general, PEGylation improves drug solubility and decreases immunogenicity. PEGylation also increases drug stability and the retention time of the conjugates in blood, and reduces proteolysis and renal excretion, thereby allowing a reduced dosing frequency. In order to benefit from these favorable pharmacokinetic consequences, a variety of therapeutic proteins, peptides, and antibody fragments, as well as small molecule drugs, have been PEGylated. This paper reviews the chemical procedures and the conditions that have been used thus far to achieve PEGylation of biomedical molecules. It also discusses the importance of structure and size of PEGs, as well as the behavior of linear and branched PEGs. A number of properties of the PEG polymer--e.g. mass, number of linking chains, the molecular site of PEG attachment--have been shown to affect the biological activity and bioavailability of the PEGylated product. Releasable PEGs have been designed to slowly release the native protein from the conjugates into the blood, aiming at avoiding any loss of efficacy that may occur with stable covalent PEGylation. Since the first PEGylated drug was developed in the 1970s, PEGylation of therapeutic proteins has significantly improved the treatment of several chronic diseases, including hepatitis C, leukemia, severe combined immunodeficiency disease, rheumatoid arthritis, and Crohn disease. The most important PEGylated drugs, including pegademase bovine, pegaspargase, pegfilgrastim, interferons, pegvisomant, pegaptanib, certolizumab pegol, and some of the PEGylated products presently in an advanced stage of development, such as PEG-uricase and PEGylated hemoglobin, are reviewed. The adaptations and applications of PEGylation will undoubtedly prove useful for the treatment of many previously difficult-to-treat conditions.


Assuntos
Peptídeos/química , Polietilenoglicóis/química , Proteínas/química , Animais , Citocinas/química , Humanos , Peptídeos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Proteínas/uso terapêutico
11.
Methods Enzymol ; 590: 317-346, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28411643

RESUMO

PEGylation, the covalent attachment of polyethylene glycol to bioactive molecules, is one of the leading approaches used to prolong pharmacokinetics, to improve the stability, and to reduce the immunogenicity of therapeutic proteins. PEG-conjugated products are associated with better therapy outcomes and improved patient compliance. Widely applied in clinical practice, the technology is mainly used to modify proteins, peptides, and oligonucleotides but also other drug delivery systems such as the liposomal one. Undergoing continuous attempts to optimize therapeutic efficacy and to tune the formation of conjugates, a number of different PEGylation processes are now available to researchers for protein conjugation. Although the possibility of obtaining highly homogeneous conjugate mixtures, preferably formed by a single monoconjugate, from a chemical conjugation reaction continues to be limited, several enzymatic conjugation approaches have recently been investigated to address this need. PEGylation mediated by microbial transglutaminase and its many advantages and modifications are outlined in detail in the current work permitting interested readers to perform site-specific protein derivatization to glutamines or lysines.


Assuntos
Proteínas de Bactérias/química , Polietilenoglicóis/química , Transglutaminases/química , Proteínas de Bactérias/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Ensaios Enzimáticos , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/isolamento & purificação , Cinética , Transglutaminases/isolamento & purificação
12.
J Drug Target ; 25(9-10): 856-864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28805084

RESUMO

Microbial transglutaminase enzyme (mTGase) is an extremely useful enzyme that is increasingly employed in the food and pharmaceutical industries and as a tool for protein modification and tagging. The current study describes how we immobilised mTGase (iTGase) on a solid support to improve its stability during the PEGylation process by which polyethylene glycol chains are attached to protein and peptide drugs. When the enzyme was immobilised at the N-terminal sequence on agarose beads, it retained more than 53% of its starting activity. Kinetic studies on the immobilised and free mTGase disclosed a 1.7 and 1.5 fold decrease of Km and Vmax, respectively. Protein PEGylation was carried out using α-lactalbumin (α-LA) and granulocyte colony stimulating factor (G-CSF). In the former case, the iTGase showed a selective conjugation towards only one Gln residue of α-LA, avoiding formation of a mono- and bi-conjugate mixture that is achieved using the free enzyme. In the latter case, the immobilised enzyme still remained selective towards only one Gln, but avoided the undesired formation of deamidated G-CSF that took place when free mTGase was used. Overall, the results of the current study highlight the suitability of iTGase in preparing site-selective protein-polymer conjugates.


Assuntos
Enzimas Imobilizadas/análise , Enzimas Imobilizadas/metabolismo , Polietilenoglicóis/metabolismo , Transglutaminases/análise , Transglutaminases/metabolismo , Sequência de Aminoácidos , Estabilidade Enzimática/fisiologia , Enzimas Imobilizadas/genética , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Transglutaminases/genética
13.
Macromol Biosci ; 16(1): 50-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26350165

RESUMO

The use of therapeutic proteins is often impaired by their short in vivo half-lives. PEGylation has been exploited to enhance protein stability and to prolong the pharmacokinetic. The biophysical characterization of two site-specific mono-PEGylated forms of human growth hormone (hGH)--chemically N-terminal PEGylated hGH (PEG-Nter-hGH) and enzymatically Gln141 PEGylated hGH (PEG-Gln141-hGH) via transglutaminase--is outlined here and their pharmacodynamics are compared. The thermal stability of PEG-Nter-hGH was increased with respect to that of hGH and PEG-Gln141-hGH. Pharmacodynamic studies in rats showed that a single injection of the conjugates had a better or comparable potency with respect to a daily hGH on a week schedule in terms of weight gain, femoral length, and tibial diaphysis width.


Assuntos
Crescimento/efeitos dos fármacos , Hormônio do Crescimento Humano/metabolismo , Polietilenoglicóis/metabolismo , Animais , Meia-Vida , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/farmacocinética , Hormônio do Crescimento Humano/farmacologia , Masculino , Polietilenoglicóis/química , Estabilidade Proteica , Ratos , Transglutaminases/metabolismo
14.
J Control Release ; 236: 79-89, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27356018

RESUMO

While interferon alpha (IFNα) is used in several viral and cancer contexts, its efficacy against ovarian cancer (OC) is far from being incontrovertibly demonstrated and, more importantly, is hindered by heavy systemic side effects. To overcome these issues, here we propose a strategy that allows a targeted delivery of the cytokine, by conjugating IFNα2a with an aldehyde-modified form of hyaluronic acid (HA). The resulting HA-IFNα2a bioconjugate was biochemically and biologically characterized. The conjugation with HA did not substantially modified both the antiviral function and the anti-proliferative activity of the cytokine. Moreover, the induction of STAT1 phosphorylation and of a specific gene expression signature in different targets was retained. In vivo optical imaging biodistribution showed that the i.p.-injected HA-IFNα2a persisted into the peritoneal cavity longer than IFNα2a without being toxic for intraperitoneal organs, thus potentially enhancing the loco-regional therapeutic effect. Indeed, in OC xenograft mouse models bioconjugate significantly improved survival as compared to the free cytokine. Overall, HA-IFNα2a bioconjugate disclosed an improved anticancer efficacy, and can be envisaged as a promising loco-regional treatment for OC.


Assuntos
Antineoplásicos/administração & dosagem , Ácido Hialurônico/química , Interferon-alfa/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/química , Antivirais/administração & dosagem , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Expressão Gênica , Humanos , Interferon alfa-2 , Interferon-alfa/química , Interferon-alfa/metabolismo , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT1/metabolismo , Distribuição Tecidual
15.
Curr Drug Targets ; 16(13): 1503-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25563593

RESUMO

Hyaluronic acid (HA) is a natural polysaccharide primarily present in the vitreous humor and in cartilages where it plays a key structural role in organizing the cartilage extracellular matrix. HA is used in a wide range of applications including treatment of arthritis (as a viscosupplementation agent for joints) and in a variety of cosmetic injectable products. Its safety profile is thus well established. Thanks to its high biocompatibility and targeting properties, HA has also been investigated for use as a carrier of anticancer drugs and, recently, also of proteins. Its role in the last case is a particularly challenging one as dedicated coupling chemistries are required to preserve the protein's conformation and activity. This study focuses on the state of the art on protein HAylation. New data from our laboratory on the local delivery of specific biologics to joints will also be outlined.


Assuntos
Portadores de Fármacos/química , Hormônio do Crescimento Humano/administração & dosagem , Ácido Hialurônico/química , Animais , Sistemas de Liberação de Medicamentos , Hormônio do Crescimento Humano/farmacocinética , Humanos , Articulações/metabolismo , Proteínas/administração & dosagem , Proteínas/farmacocinética
16.
J Control Release ; 199: 106-13, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25499917

RESUMO

Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs). A ß-glutamic acid dendron anchor was used to attach a PEG chain to several distearoyl phosphoethanolamine lipids, thereby differing from conventional stealth liposomes where a PEG chain is attached to a single phospholipid. This composition was shown to increase liposomal stability, prolong the circulation half-life, improve the biodistribution profile and enhance the anticancer potency of a drug payload (doxorubicin hydrochloride).


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros , Lipossomos/química , Fosfolipídeos/química , Polietilenoglicóis/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Células CACO-2 , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Bicamadas Lipídicas , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
17.
J Control Release ; 187: 30-8, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-24837189

RESUMO

Osteoarthritis (OA) is characterized by chronic degeneration of joints, involving mainly the articular cartilage and the underlying bone, and severely impairing the quality of life of the patient. Although with limited efficacy, currently available pharmacological treatments for OA aim to control pain and to retard disease progression. Salmon calcitonin (sCT) is a drug which has been shown to have therapeutic effects in experimental arthritis by inhibiting both bone turnover and cartilage degradation and reducing the activities of matrix metalloproteinases (MMP). High molecular weight hyaluronic acid (HA) is used as a lubricant in OA therapy, and, interestingly, HA polymers may normalize the levels of MMP-1, -3 and -13. We demonstrated that sCT rapidly clears from the knee joint of rat animal model, after intra-articular (i.a.) administration, and it induces systemic effects. Here, sCT was conjugated to HA (200kDa) with the aim of prolonging the residence time of the polypeptide in the joint space by reducing its clearance. An aldehyde derivative of HA was used for N-terminal site-selective coupling of sCT. The activity of sCT was preserved, both in vitro and in vivo, after its conjugation and the i.a. injection of HA-sCT did not trigger any systemic effects in rats. The efficacy of HA-sCT treatment was tested in a rabbit OA model and clear chondro-protective effect was proven by macro- and microscopic assessments and histological findings. Our results indicate that HAylation of sCT increases the size of the polypeptide in a stable covalent manner and delays its passage into the blood stream. We conclude that HA conjugation prolongs the anti-catabolic effects of sCT in joint tissues, including the synovial membrane and cartilage.


Assuntos
Anti-Inflamatórios/administração & dosagem , Artrite Experimental/tratamento farmacológico , Calcitonina/administração & dosagem , Ácido Hialurônico/química , Osteoartrite/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Artrite Experimental/metabolismo , Calcitonina/química , Cálcio/sangue , Cartilagem Articular/patologia , Linhagem Celular , AMP Cíclico/metabolismo , Articulação do Joelho/metabolismo , Masculino , Coelhos , Ratos Sprague-Dawley , Suínos
18.
Carbohydr Polym ; 92(2): 2163-70, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23399272

RESUMO

Polymer conjugation has been widely exploited to prolong half-life and reduce immunogenicity of therapeutic proteins. Here, the potentials of hyaluronic acid (HA) have been investigated by studying the conjugates with two model enzymes, trypsin and RNase A, and with insulin. As the direct coupling of proteins to the HA's carboxylic groups can cause cross-linking problems, a hyaluronan-aldehyde derivative has been synthesized for N-terminal site-selective conjugation. HA conjugation, termed HAylation, preserved the activities of enzymes and their thermal stabilities. Insulin HAylation was studied by preparing two conjugates with different peptide loadings (32% and 17%, w/w). Noticeably, the conjugate with the lower loading showed the greater effect on blood glucose level. The 17% HA-insulin conjugate showed a lowering effect on blood glucose level for up to 6h, while free insulin exhausted its action after 1h. This study highlights the potentials of hyaluronan-aldehyde for protein delivery.


Assuntos
Ácido Hialurônico/metabolismo , Proteínas/metabolismo , Aldeídos/química , Animais , Bovinos , Eritrócitos/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/toxicidade , Insulina/química , Insulina/metabolismo , Teste de Materiais , Proteínas/química , Ratos , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Tripsina/química , Tripsina/metabolismo
19.
Eur J Pharm Biopharm ; 84(1): 21-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23275110

RESUMO

Salmon calcitonin (sCT) is characterized by a poor oral availability. A new copolymer, ß-poly(N-2-hydroxyethyl)-graft-{N-2-ethylene[2-poly(methacrylic acid sodium salt)isobutyrate]}-d,l-aspartamide (PHEA-IB-p(MANa(+))), was designed for the oral administration of sCT through the formation of supramolecular aggregates (SAs) based on electrostatic interactions. Several sCT/PHEA-IB-p(MANa(+)) weight ratios were characterized by turbidimetry, DLS, zeta potential, and microscopy analysis. After the incubation of sCT/PHEA-IB-p(MANa(+)) complex with digestive enzymes, 10% (w/w) of loaded sCT was released in the native form. In vitro investigation was carried out to determine the copolymer effect on the permeability of sCT in Caco-2 cell monolayers. sCT pharmacokinetic profile and the pharmacodynamic effect on calcium plasma level were determined following an oral administration of the lead sCT/PHEA-IB-p(MANa(+)) SA (1/5 ratio) in rats. The SA yielded a marked prolongation of the sCT lowering calcium effect. The maximum decrease, 35% with respect the basal calcium plasma level at time 0 h, was achieved after 4h post-administration, and after 7 h, a decrease of 20% was still present. Differently, sCT yielded a transient calcium decrease that was completely restored after 5h. The higher bioavailability of sCT administered as SA was confirmed by the pharmacokinetic studies. In fact, the AUC and the Cmax were about 15 times higher for the sCT formulated as SA than the free sCT. This study indicates the potentials of PHEA-IB-p(MANa(+)) as carrier of sCT for oral delivery.


Assuntos
Calcitonina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Peptídeos/administração & dosagem , Poli-Hidroxietil Metacrilato/análogos & derivados , Ácidos Polimetacrílicos/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Calcitonina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Peptídeos/química , Poli-Hidroxietil Metacrilato/administração & dosagem , Poli-Hidroxietil Metacrilato/química , Ácidos Polimetacrílicos/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
20.
J Control Release ; 159(3): 353-61, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22405905

RESUMO

Poly(2-ethyl 2-oxazoline) (PEOZ) is a water-soluble, stable and biocompatible polymer that was prepared in a linear form for the conjugation of protein biomolecules. Polymers of molecular weights ranging from 5 to 20 kDa, with an aldehyde or an amine functional terminal group, were synthesized with narrow polydispersities. To assess the suitability of the polymer for therapeutic application, granulocyte colony stimulating factor (G-CSF) was used as a model protein for PEOZ conjugation. Two coupling strategies were employed, namely the chemical N-terminal reductive amination and the enzymatic transglutaminase (TGase) mediated glutamine conjugation. The secondary structure of the protein, measured by circular dichroism, was maintained upon PEOZylation and the stability of conjugates toward aggregation at 37 °C was improved compared to G-CSF. The potency of PEOZ-G-CSF mono-conjugates was tested in vitro by cell proliferation assays and in vivo by studying the effects on white blood cell and neutrophil count increases in normal rats. The results have shown that PEOZ is suitable for protein conjugation by both chemical and enzymatic methods and that the conjugates of G-CSF retained high biological activity, both in vitro and in vivo.


Assuntos
Portadores de Fármacos/química , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/química , Poliaminas/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Estabilidade de Medicamentos , Eletroforese em Gel de Poliacrilamida , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Contagem de Leucócitos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Dados de Sequência Molecular , Peso Molecular , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Ratos Sprague-Dawley , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA