Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 170(4): 787-799.e18, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802046

RESUMO

Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.


Assuntos
Bacillus subtilis/fisiologia , Replicação do DNA , Listeria monocytogenes/fisiologia , Transcrição Gênica , Animais , Período de Replicação do DNA , Feminino , Expressão Gênica , Técnicas de Inativação de Genes , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Camundongos , Estresse Fisiológico , Virulência
2.
Mol Cell ; 73(1): 157-165.e5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449724

RESUMO

Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an "evolvability factor" that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd's role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with "anti-evolution" drugs)-in particular, Mfd-providing an unexplored route toward battling the AMR crisis.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Evolução Molecular , Fatores de Transcrição/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Mutagênese/efeitos dos fármacos , Ligação Proteica , Especificidade da Espécie , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
Nature ; 562(7726): 286-290, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283133

RESUMO

Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes that are found in all kingdoms of life1. In bacteria, MBOATs modify protective cell-surface polymers. In vertebrates, some MBOAT enzymes-such as acyl-coenzyme A:cholesterol acyltransferase and diacylglycerol acyltransferase 1-are responsible for lipid biosynthesis or phospholipid remodelling2,3. Other MBOATs, including porcupine, hedgehog acyltransferase and ghrelin acyltransferase, catalyse essential lipid modifications of secreted proteins such as Wnt, hedgehog and ghrelin, respectively4-10. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Here we present crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid in Gram-positive bacteria11-16, both alone and in complex with the D-alanyl donor protein DltC. DltB contains a ring of 11 peripheral transmembrane helices, which shield a highly conserved extracellular structural funnel extending into the middle of the lipid bilayer. The conserved catalytic histidine residue is located at the bottom of this funnel and is connected to the intracellular DltC through a narrow tunnel. Mutation of either the catalytic histidine or the DltC-binding site of DltB abolishes the D-alanylation of lipoteichoic acid and sensitizes the Gram-positive bacterium Bacillus subtilis to cell-wall stress, which suggests cross-membrane catalysis involving the tunnel. Structure-guided sequence comparison among DltB and vertebrate MBOATs reveals a conserved structural core and suggests that MBOATs from different organisms have similar catalytic mechanisms. Our structures provide a template for understanding structure-function relationships in MBOATs and for developing therapeutic MBOAT inhibitors.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Bicamadas Lipídicas/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Animais , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Sequência Conservada , Cristalografia por Raios X , Histidina/genética , Histidina/metabolismo , Bicamadas Lipídicas/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Relação Estrutura-Atividade , Ácidos Teicoicos/metabolismo
4.
RNA ; 23(12): 1946-1960, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28956756

RESUMO

In budding yeast, inactivating mutations within the 40S ribosomal subunit decoding center lead to 18S rRNA clearance by a quality control mechanism known as nonfunctional 18S rRNA decay (18S NRD). We previously showed that 18S NRD is functionally related to No-Go mRNA Decay (NGD), a pathway for clearing translation complexes stalled on aberrant mRNAs. Whereas the NGD factors Dom34p and Hbs1p contribute to 18S NRD, their genetic deletion (either singly or in combination) only partially stabilizes mutant 18S rRNA. Here we identify Asc1p (aka RACK1) and Rps3p, both stable 40S subunit components, as additional 18S NRD factors. Complete stabilization of mutant 18S rRNA in dom34Δ;asc1Δ and hbs1Δ;asc1Δ strains indicates the existence of two genetically separable 18S NRD pathways. A small region of the Rps3p C-terminal tail known to be subject to post-translational modification is also crucial for 18S NRD. We combine these findings with the effects of mutations in the 5' → 3' and 3' → 5' decay machinery to propose a model wherein multiple targeting and decay pathways kinetically contribute to 18S NRD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade de RNA , RNA Fúngico/genética , RNA Ribossômico 18S/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao GTP/genética , RNA Fúngico/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
PLoS Genet ; 11(6): e1005289, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26070154

RESUMO

In bacteria the concurrence of DNA replication and transcription leads to potentially deleterious encounters between the two machineries, which can occur in either the head-on (lagging strand genes) or co-directional (leading strand genes) orientations. These conflicts lead to replication fork stalling and can destabilize the genome. Both eukaryotic and prokaryotic cells possess resolution factors that reduce the severity of these encounters. Though Escherichia coli accessory helicases have been implicated in the mitigation of head-on conflicts, direct evidence of these proteins mitigating co-directional conflicts is lacking. Furthermore, the endogenous chromosomal regions where these helicases act, and the mechanism of recruitment, have not been identified. We show that the essential Bacillus subtilis accessory helicase PcrA aids replication progression through protein coding genes of both head-on and co-directional orientations, as well as rRNA and tRNA genes. ChIP-Seq experiments show that co-directional conflicts at highly transcribed rRNA, tRNA, and head-on protein coding genes are major targets of PcrA activity on the chromosome. Partial depletion of PcrA renders cells extremely sensitive to head-on conflicts, linking the essential function of PcrA to conflict resolution. Furthermore, ablating PcrA's ATPase/helicase activity simultaneously increases its association with conflict regions, while incapacitating its ability to mitigate conflicts, and leads to cell death. In contrast, disruption of PcrA's C-terminal RNA polymerase interaction domain does not impact its ability to mitigate conflicts between replication and transcription, its association with conflict regions, or cell survival. Altogether, this work establishes PcrA as an essential factor involved in mitigating transcription-replication conflicts and identifies chromosomal regions where it routinely acts. As both conflicts and accessory helicases are found in all domains of life, these results are broadly relevant.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , DNA Helicases/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Óperon , RNA Ribossômico/genética , RNA de Transferência/genética
6.
Mol Cell ; 34(4): 440-50, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19481524

RESUMO

Eukaryotes possess numerous quality control systems that monitor both the synthesis of RNA and the integrity of the finished products. We previously demonstrated that Saccharomyces cerevisiae possesses a quality control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating translationally defective rRNAs. Here we show that NRD can be divided into two mechanistically distinct pathways: one that eliminates rRNAs with deleterious mutations in the decoding site (18S NRD) and one that eliminates rRNAs containing deleterious mutations in the peptidyl transferase center (25S NRD). 18S NRD is dependent on translation elongation and utilizes the same proteins as those participating in no-go mRNA decay (NGD). In cells that accumulate 18S NRD and NGD decay intermediates, both RNA types can be seen in P-bodies. We propose that 18S NRD and NGD are different observable outcomes of the same initiating event: a ribosome stalled inappropriately at a sense codon during translation elongation.


Assuntos
Estabilidade de RNA , RNA Mensageiro , RNA Ribossômico 18S , RNA Ribossômico , Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Hibridização in Situ Fluorescente , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 9(1): 4662, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405125

RESUMO

Most bacterial genes are encoded on the leading strand, co-orienting the movement of the replication machinery with RNA polymerases. This bias reduces the frequency of detrimental head-on collisions between the two machineries. The negative outcomes of these collisions should lead to selection against head-on alleles, maximizing genome co-orientation. Our findings challenge this model. Using the GC skew calculation, we reveal the evolutionary inversion record of all chromosomally encoded genes in multiple divergent bacterial pathogens. Against expectations, we find that a large number of co-oriented genes have inverted to the head-on orientation, presumably increasing the frequency of head-on replication-transcription conflicts. Furthermore, we find that head-on genes, (including key antibiotic resistance and virulence genes) have higher rates of non-synonymous mutations and are more frequently under positive selection (dN/dS > 1). Based on these results, we propose that spontaneous gene inversions can increase the evolvability and pathogenic capacity of bacteria through head-on replication-transcription collisions.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Evolução Biológica , Genes Bacterianos , Alelos , Composição de Bases/genética , Sequência de Bases , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/genética , Taxa de Mutação , Filogenia , Seleção Genética , Especificidade da Espécie , Fatores de Tempo , Virulência/genética
9.
Elife ; 62017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28092263

RESUMO

The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts.


Assuntos
Bactérias/enzimologia , Bactérias/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Complexos Multienzimáticos/metabolismo , Transcrição Gênica , Estabilidade Proteica
10.
Genome Biol Evol ; 8(12): 3696-3702, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039230

RESUMO

We previously discovered that lagging strand genes evolve faster in Bacillus subtilis (and potentially other bacteria). Lagging strand genes are transcribed in the head-on orientation with respect to DNA replication, leading to collisions between the two machineries that stall replication and can destabilize genomes. Our previous work indicated that the increased mutagenesis of head-on genes depends on transcription-coupled repair and the activity of an error prone polymerase which is likely activated in response to these collisions. Recently, it was proposed that sequence context is a major contributor to the increased mutagenesis and evolution of head-on genes. These models are based on laboratory-based evolution experiments performed in B. subtilis. However, critical evolutionary analyses of naturally occurring single nucleotide polymorphisms (SNPs) in wild strains were not performed. Using the genomic sequences from nine closely related wild B. subtilis strains, we analyzed over 200,000 naturally occurring SNPs as a proxy for natural mutation patterns for all genes and in particular, head-on genes. Our analysis suggests that (frame-independent) triplet sequence context can impact mutation rates: certain triplet sequences (TAG, CCC, CTA, and ACC) accumulate SNPs at a higher rate and are depleted from the genome. However, the triplet sequences previously identified as mutagenic in laboratory experiments (CCG, GCG, and CAC) do not have an elevated rate of SNP accumulation and are not depleted from the genome. Importantly, dN/dS analyses indicate that the accelerated evolution of head-on genes is not dependent on any particular triplet sequence. Thus, in agreement with our previous results, mutagenic transcription-coupled repair, rather than sequence context, is sufficient to explain the accelerated evolution of head-on genes.


Assuntos
Bacillus subtilis/genética , Replicação do DNA/genética , Evolução Molecular Direcionada , Genoma Bacteriano/genética , Bacillus subtilis/classificação , Reparo do DNA/genética , Mutagênese , Acúmulo de Mutações , Taxa de Mutação , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA