Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Xenobiotica ; 49(2): 177-186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29405805

RESUMO

1. Known cytochrome P450 (CYP) substrates in humans are used in veterinary medicine, with limited knowledge of the similarity or variation in CYP metabolism. Comparison of canine and feline CYP metabolism via liver microsomes report that human CYP probes and inhibitors demonstrate differing rates of intrinsic clearance (CLint). 2. The purpose of this study was to utilize a high-throughput liver microsome substrate depletion assay, combined with microsomal and plasma protein binding to compare the predicted hepatic clearance (CLhep) of thirty therapeutic agents used off-label in canines and felines, using both the well-stirred and parallel tube models. 3. In canine liver microsomes, 3/30 substrates did not have quantifiable CLint, while midazolam and amitriptyline CLint was too rapid for accurate determination. A CLhep was calculated for 29/30 substrates in feline microsomes. Overall, canine CLhep was faster compared to the feline, with fold differences ranging from 2-20-fold. 4. A comparison between the well-stirred and parallel tube model indicates that the parallel tube model reports a slighter higher CLhep in both species. 5. The differences in CYP metabolism between canine and feline highlight the need for additional research into CYP expression and specificity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Drogas Veterinárias/farmacocinética , Animais , Gatos , Cães , Taxa de Depuração Metabólica
2.
J Vet Pharmacol Ther ; 42(1): 7-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30171610

RESUMO

Understanding of cytochrome P450 (CYP) isoform distribution and function in the domestic feline is limited. Only a few studies have defined individual CYP isoforms across metabolically relevant tissues, hampering the ability to predict drug metabolism and potential drug-drug interactions. Using RNA sequencing (RNA-seq), transcriptomes from the 99 Lives Cat Genome Sequencing Initiative databank combined with experimentally acquired whole transcriptome sequencing of healthy, adult male (n = 2) and female (n = 2) domestic felines, expression of 42 CYP isoforms were identified in 20 different tissues. Thirty-seven of these isoforms had not been previously reported in cats. Depending on the tissue, three to twenty-nine CYP isoform transcripts were expressed. The feline genome annotations did not differentiate CYP2E1 and 2E2 genes, demonstrating poor annotation for this gene using the reference genome. As the majority of the sequences are based on automated pipelines, complete cDNA sequences for translation into CYP protein sequences could not be determined. This study is the first to identify and characterize 37 additional CYP isoforms in feline tissues, increasing the number of identified CYP from the previously reported seven isoforms to 42 across 20 tissues.


Assuntos
Gatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Doenças do Gato/enzimologia , Doenças do Gato/genética , Doenças do Gato/metabolismo , Gatos/genética , Sistema Enzimático do Citocromo P-450/genética , Feminino , Perfilação da Expressão Gênica/veterinária , Genoma/genética , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de RNA/veterinária , Distribuição Tecidual
3.
Vet J ; 211: 26-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27053015

RESUMO

Drug interactions due to inhibition of hepatic cytochrome P450 (CYP450) enzymes are not well understood in veterinary medicine. Forty-eight commercial porcine medicines were selected to evaluate their potential inhibition on porcine hepatic CYP450 enzymes at their commercial doses and administration routes. Those drugs were first assessed through a single point inhibitory assay at 3 µM in porcine liver microsomes for six specific CYP450 metabolisms (phenacetin o-deethylation, coumarin 7-hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorozoxazone 6-hydroxylation and midazolam 1'-hydroxylation). When the inhibition was > 10% in the single point inhibitory assay, IC50 values (inhibitory concentrations that decrease biotransformation of selected substrate by 50%) were determined. Overall, 17 drugs showed in vitro inhibition on one or more porcine hepatic CYP450 metabolisms with different IC50 values. The potential in vivo porcine hepatic CYP450 inhibition by those drugs was assessed by combining the in vitro data and in vivo Cmax (maximum plasma concentrations from pharmacokinetic studies of the porcine medicines at their commercial doses and administration routes). Three drugs showed high potential inhibition to one or two porcine hepatic CYP450 isoforms at their commercial doses and administration routes, while seven drugs had medium risk and seven had low risk of such in vivo inhibition. These data are useful to prevent potential drug interactions in veterinary medical practice.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Sus scrofa/metabolismo , Animais , Fígado/enzimologia , Masculino , Microssomos Hepáticos/enzimologia
4.
J Parasitol ; 100(6): 848-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25116000

RESUMO

The objective of the current study was to establish an in vitro screen and a highly sensitive analytical assay to delineate key physicochemical properties that favor compound bioaccumulation in the L3 life stage of a Haemonchus contortus isolate. Time-dependent studies revealed that absorption and elimination kinetics during the first 6 hr of exposure were sufficient to achieve maximum bioaccumulation for the majority of compounds tested. In subsequent studies, the larvae were incubated for 6 hr in a medium containing 146 compounds (5 µM initial concentration), including both human and veterinary medicines, characterized by a broad range of physicochemical properties. Bioaccumulation of the compounds by the nematodes was determined, and multiple physicochemical descriptors were selected for correlation. Data analysis using Bayes classification model and partial least-square regression revealed that clogD7.4, rotatable bond, E-state, and hydrogen bond donor each correlated with compound bioaccumulation in H. contortus L3. The finding that lipophilicity was critical for transcuticle compound permeation was consistent with previous studies in other parasitic species and in adult H. contortus . The finding of additional physicochemical properties that contribute to compound conformational flexibility, polarity, and electrotopological state shed light on the mechanisms governing transcuticle permeation. The relatively poor correlation between transcuticle and transmembrane permeation indicated the distinct mechanisms of compound permeation, likely due to the different constituents, and their contributions to overall transport function, of the lipid membranes and the porous collagen barrier of the nematode cuticle. Our study, for the first time, establishes a high-throughput screen for compound bioaccumulation in a parasitic nematode and further elucidates physicochemical factors governing transcuticular permeation of compounds. Application of this methodology will help explain the basis for discrepancies observed in receptor binding and whole organism potency assays and facilitate incorporation of drug delivery principles in the design of candidate anthelmintics.


Assuntos
Anti-Helmínticos/farmacocinética , Haemonchus/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Relação Dose-Resposta a Droga , Haemonchus/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Larva/metabolismo , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA