Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892119

RESUMO

The immune system plays a key role in gastrointestinal (GI) pathologies, being responsible for protecting the body against infection, maintaining homeostasis, and regulating the inflammatory response in the GI tract [...].


Assuntos
Gastroenteropatias , Sistema Imunitário , Humanos , Gastroenteropatias/imunologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Animais , Homeostase/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo
2.
Biochem Cell Biol ; 99(1): 54-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32538128

RESUMO

Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.


Assuntos
Leitelho , Mucosa Intestinal/imunologia , Lactoferrina/imunologia , Receptores Toll-Like/imunologia , Soro do Leite/imunologia , Animais , Bovinos , Células Cultivadas , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Lactoferrina/química , Peroxidação de Lipídeos/imunologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores Toll-Like/genética , Soro do Leite/química
3.
Cell Physiol Biochem ; 47(3): 1217-1229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913461

RESUMO

BACKGROUND/AIMS: Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. METHODS: Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. RESULTS: NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. CONCLUSIONS: It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression.


Assuntos
Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células CACO-2 , Enterócitos/citologia , Humanos , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
4.
Mediators Inflamm ; 2014: 982639, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147442

RESUMO

Oxidative stress is thought to play a key role in the development of intestinal damage in intestinal inflammatory diseases. Several molecules are involved in the intestinal inflammation, either as pro- or anti-inflammatory factors; however, their effects on intestinal oxidative stress seem to be controversial. This work analyzes the contribution of pro- and anti-inflammatory molecules to the balance of oxidative damage in intestinal epithelial cells, as well as their effects on cellular antioxidant enzyme activity. With this purpose, the lipid and protein oxidation, together with the activity of catalase, superoxide dismutase, and glutathione peroxidase, were determined in the Caco-2 cells treated with serotonin, adenosine, melatonin, and TNFα, as proinflammatory factors, and IL-10, as an anti-inflammatory cytokine. The results have shown that all the proinflammatory factors assayed increased oxidative damage. In addition, these factors also inhibited the activity of antioxidant enzymes in the cells, except melatonin. In contrast, IL-10 did not alter these parameters but was able to reduce the prooxidant effects yielded by serotonin, adenosine, melatonin, or TNFα, in part by restoring the antioxidant enzymes activities. In summary, proinflammatory factors may induce oxidative damage in intestinal epithelial cells, whereas IL-10 seems to be able to restore the altered redox equilibrium in Caco-2 cells.


Assuntos
Interleucina-10/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Adenosina/farmacologia , Células CACO-2 , Citocinas/farmacologia , Humanos , Melatonina/farmacologia , Serotonina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
5.
Life (Basel) ; 13(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37240731

RESUMO

Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity is determined mainly by the extracellular availability of 5-HT, which is controlled by the serotonin transporter (SERT). Recent studies indicate that, by activation of innate immunity receptors, gut microbiota can modulate serotonergic signaling by SERT modulation. As part of its function, gut microbiota metabolize nutrients from diet to produce different by-products, including short-chain fatty acids (SCFAs): propionate, acetate, and butyrate. However, it is not known whether these SCFAs regulate the serotonergic system. The objective of this study was to analyze the effect of SCFAs on the gastrointestinal serotonergic system using the Caco-2/TC7 cell line that expresses SERT and several receptors constitutively. Cells were treated with different SCFAs concentrations, and SERT function and expression were evaluated. In addition, the expression of 5-HT receptors 1A, 2A, 2B, 3A, 4, and 7 was also studied. Our results show that the microbiota-derived SCFAs regulate intestinal serotonergic system, both individually and in combination, modulating the function and expression of SERT and the 5-HT1A, 5-HT2B, and 5-HT7 receptors expression. Our data highlight the role of gut microbiota in the modulation of intestinal homeostasis and suggest microbiome modulation as a potential therapeutic treatment for intestinal pathologies and neuropsychiatric disorders involving serotonin.

6.
Cell Physiol Biochem ; 30(1): 187-98, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22759966

RESUMO

Serotonin, a neurotransmitter/autocrineagent mainly synthesized by intestinal enterochromaffin cells, regulates the whole intestinal physiology. Toll-like receptor 3 (TLR3) also contributes to the intestinal physiology by modulating intestinal innate immunity responses. Both serotonin and TLR3 are involved in intestinal inflammatory processes; however, the role of TLR3 in the regulation of intestinal 5-HT availability remains unexplored. The present study analyzes the effect of TLR3 activation on serotonin transporter (SERT) activity in Caco-2 cells. Treatment with poly(I:C), dsRNA synthetic analogue and TLR3 ligand, was assayed and SERT activity determined by 5-HT uptake and transepithelial flux. SERT expression was analyzed by qRT-PCR and western blotting. Poly(I:C) short-term treatment inhibited SERT activity in the apical and basal membrane of epithelial cells and diminished SERT protein content in the membrane. SERT total protein and mRNA levels were not affected by poly(I:C), suggesting a post-translational alteration of SERT. The poly(I:C) effect on SERT activity did not appear to be mediated by PKC, cAMP, PKR or JNK signaling pathways; however, the p38 MAPK pathway seemed to be involved. Our results demonstrate that TLR3 inhibits SERT activity, which may increase 5-HT extracellular levels and contribute to the inflammatory response; however, 5-HT treatment did not affect TLR3 expression.


Assuntos
Enterócitos/metabolismo , Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor 3 Toll-Like/metabolismo , Células CACO-2 , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Enterócitos/enzimologia , Humanos , Microvilosidades/metabolismo , Poli I-C/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transdução de Sinais , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , eIF-2 Quinase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Clin Med ; 11(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268348

RESUMO

During the last decades, the management of patients with chronic intestinal diseases has experienced remarkable progress from both diagnostic and therapeutic point of view [...].

8.
Front Endocrinol (Lausanne) ; 12: 748254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819919

RESUMO

Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.


Assuntos
Eixo Encéfalo-Intestino/fisiologia , Intestinos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Serotonina/fisiologia , Animais , Microbioma Gastrointestinal/fisiologia , Humanos
9.
J Clin Med ; 10(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34362210

RESUMO

Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder whose aetiology is still unknown. Most hypotheses point out the gut-brain axis as a key factor for IBS. The axis is composed of different anatomic and functional structures intercommunicated through neurotransmitters. However, the implications of key neurotransmitters such as norepinephrine, serotonin, glutamate, GABA or acetylcholine in IBS are poorly studied. The aim of this review is to evaluate the current evidence about neurotransmitter dysfunction in IBS and explore the potential therapeutic approaches. IBS patients with altered colorectal motility show augmented norepinephrine and acetylcholine levels in plasma and an increased sensitivity of central serotonin receptors. A decrease of colonic mucosal serotonin transporter and a downregulation of α2 adrenoceptors are also correlated with visceral hypersensitivity and an increase of 5-hydroxyindole acetic acid levels, enhanced expression of high affinity choline transporter and lower levels of GABA. Given these neurotransmitter dysfunctions, novel pharmacological approaches such as 5-HT3 receptor antagonists and 5-HT4 receptor agonists are being explored for IBS management, for their antiemetic and prokinetic effects. GABA-analogous medications are being considered to reduce visceral pain. Moreover, agonists and antagonists of muscarinic receptors are under clinical trials. Targeting neurotransmitter dysfunction could provide promising new approaches for IBS management.

10.
J Pineal Res ; 48(4): 332-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20210852

RESUMO

Gastrointestinal serotonin (5-HT) and melatonin are two closely related neuromodulators which are synthesised in the enterochromaffin cells of the intestinal epithelium and which have been shown to be involved in the physiopathology of the gastrointestinal tract. The effects of 5-HT depend on 5-HT availability which is, in part, modulated by the serotonin transporter (SERT). This transporter provides an efficient 5-HT uptake after release and is expressed in the membrane of the enterocytes. Although the origin and effects of 5-HT and melatonin are similar, the interrelationship between them in the gastrointestinal tract is unknown. The main aim of this study was to determine whether melatonin affects SERT activity and expression, and, if so, to elucidate the mechanisms involved. Caco-2 cell line was used to carry out the study as these cells have been shown to endogenously express SERT. The results showed that melatonin inhibits SERT activity by affecting both V(max) and kt kinetic constants although SERT synthesis or intracellular trafficking did not appear to be affected. The melatonin effect seemed to be independent of melatonin receptors MT(1) and MT(2) and protein kinase C and cAMP intracellular pathways. Our results suggest that the inhibition of SERT might be due to a catalytic effect of melatonin on the allosteric citalopram-sensitive site in SERT. This study shows, for the first time, that melatonin modulates SERT activity, thus demonstrating the feedback system between melatonin and the serotoninergic system in the gastrointestinal tract.


Assuntos
Mucosa Intestinal/metabolismo , Melatonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Análise de Variância , Células CACO-2 , Citalopram/farmacologia , Fluoxetina/farmacologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Receptores de Melatonina/metabolismo , Análise de Regressão , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
11.
J Psychopharmacol ; 33(11): 1352-1363, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31210090

RESUMO

BACKGROUND: The serotonergic system is a key component of physiological brain function and is essential for proper neurological activity. Numerous neuropsychiatric disorders are associated with deregulation of the serotonergic system. Accordingly, many pharmacological treatments are focused on modulation of this system. While providing a promising line of therapeutic moderation, these approaches may be complicated due to the presence of alternative splicing events for key genes in this pathway. Alternative splicing is a co-transcriptional process by which different mRNA transcripts can be produced from the same gene. These different isoforms may have diverse activities and functions, and their relative balance is often critical for the maintenance of homeostasis. Alternative splicing greatly increases the production of proteins, augmenting cell plasticity, and provides an important control point for regulation of gene expression. AIM: The objective of this narrative review is to discuss the potential impact of alternative splicing of different components of the serotonergic system and speculate on their involvement in several neuropsychiatric disorders. CONCLUSIONS: The specific role of each isoform in disease and their relative activities in the signalling pathways involved are yet to be determined. We need to gain a better understanding of the basis of alternative isoforms of the serotonergic system in order to fully understand their impact and be able to develop new effective pharmacological isoform-specific targets.


Assuntos
Transtornos Mentais/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Serotonina/metabolismo , Processamento Alternativo/genética , Animais , Plasticidade Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Transtornos Mentais/genética , Doenças do Sistema Nervoso/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
12.
Neurogastroenterol Motil ; 31(9): e13648, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31119834

RESUMO

BACKGROUND: H2 S is a neuromodulator that may inhibit intestinal motility. H2 S production in colon is yielded by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) enzymes and sulfate-reducing bacteria (SRB). Toll-like receptors (TLRs) recognize intestinal microbiota. The aim of this work was to evaluate the influence of TLR2 and TLR4 on the endogenous and SRB-mediated synthesis of H2 S and its consequences on the colonic motility of mouse. METHODS: Muscle contractility studies were performed in colon from WT, Tlr2-/- , and Tlr4-/- mice. The mRNA levels of TLR2, TLR4, CBS, CSE, and SRB were measured by real-time PCR. Free sulfide levels in colon and feces were determined by colorimetric assays. RESULTS: NaHS and GYY4137, donors of H2 S, reduced the contractility of colon. Aminooxyacetic acid (AOAA), inhibitor of CBS, and D-L propargylglycine (PAG), inhibitor of CSE, increased the contractility of colon. In vivo treatment with NaHS or GYY4137 inhibited the spontaneous contractions and upregulated TLR2 expression. The in vivo activation of TLR4 with lipopolysaccharide increased the contractile response to PAG, mRNA levels of CSE, and the free sulfide levels of H2 S in colon. In Tlr2-/- and Tlr4-/-  mice, the contractions induced by AOAA and PAG and mRNA levels of CBS and CSE were lower with respect to WT mice. Deficiency of TLR2 or TLR4 provokes alterations in free sulfide levels and SRB of colon. CONCLUSIONS AND INFERENCES: Our study demonstrates interaction between TLR2 and TLR4 and the sulfide system in the regulation of colonic motility and contributes to the pathophysiology knowledge of intestinal motility disorders.


Assuntos
Colo/metabolismo , Motilidade Gastrointestinal/fisiologia , Sulfeto de Hidrogênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Colo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Motilidade Gastrointestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Técnicas de Cultura de Órgãos , Compostos Organotiofosforados/farmacologia
13.
IET Nanobiotechnol ; 10(6): 374-381, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27906137

RESUMO

Single-walled carbon nanotubes (SWCNTs) are thoroughly purified and dispersed in an aqueous solution of high molecular weight poly-L-lysine (pLlys). Human intestinal epithelial Caco-2/TC7 cells are incubated with the SWCNT dispersions in pLlys, and their effects on cell viability are studied by image flow cytometry. No significant changes are observed in the cell culture wells up to pLlys concentrations of 10 µg ml-1. However, high mortality is detected at pLlys concentrations of 100 µg ml-1. The presence of oxygen-free SWCNTs does not modify the effects of pLlys on cell cultures at any of the tested concentrations (≤1 µg ml-1). In addition, SWCNTs having an 8 wt.% of surface oxygen are tested with identical results. Thus, purified SWCNTs, even bearing oxygen functional groups, act as inert particles in the cell culture medium. This result supports the applicability of SWCNTs as carriers in pharmacological formulations against digestive tract diseases.


Assuntos
Coloides/toxicidade , Nanotubos de Carbono/toxicidade , Polilisina/toxicidade , Células CACO-2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA