Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
FASEB J ; 31(3): 1107-1119, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27974593

RESUMO

Angiogenesis is a cause of visual impairment and blindness in the wet form of age-related macular degeneration and in ischemic retinopathies. Current therapies include use of anti-VEGF agents to reduce choroidal neovascularization (CNV) and edema. These treatments are effective in most cases, but spontaneous or acquired resistance to anti-VEGF and possible adverse effects of long-term VEGF inhibition in the retina and choroid highlight a need for additional alternative therapies. Integrins αvß3 and αvß5, which regulate endothelial cell proliferation and stabilization, have been implicated in ocular angiogenesis. Lebecetin (LCT) is a 30-kDa heterodimeric C-type lectin that is isolated from Macrovipera lebetina venom and interacts with α5ß1- and αv-containing integrins. We previously showed that LCT inhibits human brain microvascular endothelial cell adhesion, migration, proliferation, and tubulogenesis. To evaluate the inhibitory effect of LCT on ocular angiogenesis, we cultured aortic and choroidal explants in the presence of LCT and analyzed the effect of LCT on CNV in the mouse CNV model and on retinal neovascularization in the oxygen-induced retinopathy model. Our data demonstrate that a single injection of LCT efficiently reduced CNV and retinal neovascularization in these models.-Montassar, F., Darche, M., Blaizot, A., Augustin, S., Conart, J.-B., Millet, A., Elayeb, M., Sahel, J.-A., Réaux-Le Goazigo, A., Sennlaub, F., Marrakchi, N., Messadi, E., Guillonneau, X. Lebecetin, a C-type lectin, inhibits choroidal and retinal neovascularization.


Assuntos
Corioide/efeitos dos fármacos , Lectinas Tipo C/uso terapêutico , Degeneração Macular/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Venenos de Víboras/uso terapêutico , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos Lew , Venenos de Víboras/farmacologia
2.
J Cardiovasc Pharmacol ; 63(3): 274-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24220315

RESUMO

Coronary endothelial dysfunction is involved in cardiac ischemia-reperfusion (IR) injury. Vascular endothelial growth factor (VEGF) activates endothelial cells and exerts cardioprotective effects in isolated hearts. The recently discovered viper venom protein called increasing capillary permeability protein (ICPP) exerts VEGF-like effects in endothelial cells. We examined whether VEGF or ICPP can influence IR outcome in vivo in mice. Dosages of VEGF and ICPP were determined by preliminary blood pressure study. In IR, both the proteins administered intravenously at reperfusion reduced infarct size (IS) by 57% for VEGF and 52% for ICPP (P < 0.01). Pretreatment with a selective VEGFR2 receptor antagonist abolished the reduction in IS. VEGF and ICPP induced ERK phosphorylation in the myocardium. IR triggered mitochondrial pore opening and impaired mitochondrial respiratory function. These effects of IR were prevented by VEGF or ICPP, which increased mitochondrial calcium retention capacity by 37% compared with saline (P < 0.05) and improved mitochondrial respiratory function (by 71% and 65%, respectively for state 3, and 51% and 38% for state 4, P < 0.01 for VEGF). Thus, intravenous administration of VEGF or ICPP at reperfusion largely reduces IS in IR, through stimulation of VEGFR2 receptors. This effect is mediated, at least in part, by improvement of IR-induced mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteínas/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Venenos de Víboras/química , Animais , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas/administração & dosagem , Proteínas/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Biomolecules ; 13(10)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37892221

RESUMO

Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.


Assuntos
Venenos de Crotalídeos , Isquemia Miocárdica , Humanos , Venenos de Serpentes/uso terapêutico , Venenos de Serpentes/química , Peptídeos/química , Proteínas , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/química , Venenos de Crotalídeos/farmacologia , Isquemia Miocárdica/tratamento farmacológico
4.
Toxins (Basel) ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37104236

RESUMO

Snake natriuretic peptide (NP) Lebetin 2 (L2) has been shown to improve cardiac function and reduce fibrosis as well as inflammation by promoting M2-type macrophages in a reperfused myocardial infarction (MI) model. However, the inflammatory mechanism of L2 remains unclear. Therefore, we investigated the effect of L2 on macrophage polarization in lipopolysaccharide (LPS)-activated RAW264.7 cells in vitro and explored the associated underlying mechanisms. TNF-α, IL-6 and IL-10 levels were assessed using an ELISA assay, and M2 macrophage polarization was determined by flow cytometry. L2 was used at non-cytotoxic concentrations determined by a preliminary MTT cell viability assay, and compared to B-type natriuretic peptide (BNP). In LPS-activated cells, both peptides reduced TNF-α and IL-6 release compared to controls. However, only L2 increased IL-10 release in a sustained manner and promoted downstream M2 macrophage polarization. Pretreatment of LPS-activated RAW264.7 cells with the selective NP receptor (NPR) antagonist isatin abolished both IL-10 and M2-like macrophage potentiation provided by L2. In addition, cell pretreatment with the IL-10 inhibitor suppressed L2-induced M2 macrophage polarization. We conclude that L2 exerts an anti-inflammatory response to LPS by regulating the release of inflammatory cytokines via stimulating of NP receptors and promoting M2 macrophage polarization through activation of IL-10 signaling.


Assuntos
Interleucina-10 , Lipopolissacarídeos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Macrófagos
5.
Biomedicines ; 11(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001946

RESUMO

(1) Background: Increased risk of myocardial infarction (MI) has been linked to several inflammatory conditions, including inflammatory bowel disease (IBD). However, the relationship between IBD and MI remains unclear. Here, we implemented an original mouse model combining IBD and MI to determine IBD's impact on MI severity and the link between the two diseases. (2) Methods: An IBD model was established by dextran sulfate sodium (DSS) administration in drinking water, alone or with oral C. albicans (Ca) gavage. IBD severity was assessed by clinical/histological scores and intestinal/systemic inflammatory biomarker measurement. Mice were subjected to myocardial ischemia-reperfusion (IR), and MI severity was assessed by quantifying infarct size (IS) and serum cardiac troponin I (cTnI) levels. (3) Results: IBD mice exhibited elevated fecal lipocalin 2 (Lcn2) and IL-6 levels. DSS mice exhibited almost two-fold increase in IS compared to controls, with serum cTnI levels strongly correlated with IS. Ca inoculation tended to worsen DSS-induced systemic inflammation and IR injury, an observation which is not statistically significant. (4) Conclusions: This is the first proof-of-concept study demonstrating the impact of IBD on MI severity and suggesting mechanistic aspects involved in the IBD-MI connection. Our findings could pave the way for MI therapeutic approaches based on identified IBD-induced inflammatory mediators.

6.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630490

RESUMO

Candida albicans is a pathobiont of the gastrointestinal tract. It can contribute to the diversity of the gut microbiome without causing harmful effects. When the immune system is compromised, C. albicans can damage intestinal cells and cause invasive disease. We hypothesize that a therapeutic approach against C. albicans infections can rely on the antimicrobial properties of probiotic bacteria. We investigated the impact of the probiotic strain Escherichia coli Nissle 1917 (EcN) on C. albicans growth and its ability to cause damage to intestinal cells. In co-culture kinetic assays, C. albicans abundance gradually decreased over time compared with C. albicans abundance in the absence of EcN. Quantification of C. albicans survival suggests that EcN exerts a fungicidal activity. Cell-free supernatants (CFS) collected from C. albicans-EcN co-culture mildly altered C. albicans growth, suggesting the involvement of an EcN-released compound. Using a model of co-culture in the presence of human intestinal epithelial cells, we further show that EcN prevents C. albicans from damaging enterocytes both distantly and through direct contact. Consistently, both C. albicans's filamentous growth and microcolony formation were altered by EcN. Taken together, our study proposes that probiotic-strain EcN can be exploited for future therapeutic approaches against C. albicans infections.

7.
Toxins (Basel) ; 14(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36422961

RESUMO

Lebetin 2 (L2), a natriuretic-like peptide (NP), exerts potent cardioprotection in myocardial infarction (MI), with stronger effects than B-type natriuretic peptide (BNP). To determine the molecular mechanisms underlying its cardioprotection effect, we used molecular modeling, molecular docking and molecular dynamics (MD) simulation to describe the binding mode, key interaction residues as well as mechanistic insights into L2 interaction with NP receptors (NPRs). L2 binding affinity was determined for human, rat, mouse and chicken NPRs, and the stability of receptor-ligand complexes ascertained during 100 ns-long MD simulations. We found that L2 exhibited higher affinity for all human NPRs compared to BNP, with a rank preference for NPR-A > NPR-C > NPR-B. Moreover, L2 affinity for human NPR-A and NPR-C was higher in other species. Both docking and MD studies revealed that the NPR-C-L2 interaction was stronger in all species compared to BNP. Due to its higher affinity to human receptors, L2 could be used as a therapeutic approach in MI patients. Moreover, the stronger interaction of L2 with NPR-C could highlight a new L2 signaling pathway that would explain its additional effects during cardiac ischemia. Thus, L2 is a promising candidate for drug design toward novel compounds with high potency, affinity and stability.


Assuntos
Peptídeo Natriurético Encefálico , Peptídeos , Venenos de Víboras , Animais , Humanos , Camundongos , Ratos , Isquemia , Simulação de Acoplamento Molecular , Peptídeos/química , Serpentes , Venenos de Víboras/química
8.
FASEB J ; 24(12): 4691-700, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20667972

RESUMO

Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene and displaying an ACE level range similar to humans. Infarct size in ACE1c was 29% lower than in ACE2c (P<0.05). Pretreatment with a kinin B2 receptor antagonist suppressed this reduction. In ACE3c, infarct size was the same as in ACE2c. But ischemic preconditioning, which reduced infarct size in ACE2c (-63%, P<0.001) and ACE1c (-52%, P<0.05), was not efficient in ACE3c (-2%, NS, P<0.01 vs. ACE2c). In ACE3c, ischemic preconditioning did not decrease myocardial inflammation or cardiomyocyte apoptosis. Pretreatment with a renin inhibitor had no cardioprotective effect in ACE2c, but in ACE3c partially restored (38%) the cardioprotection of ischemic preconditioning. Thus, a modest genetic increase in ACE impairs myocardial tolerance to ischemia. ACE level plays a critical role in cardiac ischemia, through both kinin and angiotensin mediated mechanisms.


Assuntos
Coração/efeitos dos fármacos , Infarto do Miocárdio/enzimologia , Isquemia Miocárdica/enzimologia , Miocárdio/enzimologia , Peptidil Dipeptidase A/metabolismo , Traumatismo por Reperfusão/genética , Amidas/farmacologia , Angiotensina I/farmacologia , Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas dos Receptores da Bradicinina , Fumaratos/farmacologia , Cininas/farmacologia , Pulmão/enzimologia , Camundongos , Camundongos Mutantes , Infarto do Miocárdio/genética , Isquemia Miocárdica/genética , Peptidil Dipeptidase A/genética , Renina/antagonistas & inibidores
9.
Toxins (Basel) ; 11(9)2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510060

RESUMO

Myocardial infarction (MI) followed by left ventricular (LV) remodeling is the most frequent cause of heart failure. Lebetin 2 (L2), a snake venom-derived natriuretic peptide, exerts cardioprotection during acute myocardial ischemia-reperfusion (IR) ex vivo. However, its effects on delayed consequences of IR injury, including post-MI inflammation and fibrosis have not been defined. Here, we determined whether a single L2 injection exerts cardioprotection in IR murine models in vivo, and whether inflammatory response to ischemic injury plays a role in L2-induced effects. We quantified infarct size (IS), fibrosis, inflammation, and both endothelial cell and cardiomyocyte densities in injured myocardium and compared these values with those induced by B-type natriuretic peptide (BNP). Both L2 and BNP reduced IS, fibrosis, and inflammatory response after IR, as evidenced by decreased leukocyte and proinflammatory M1 macrophage infiltrations in the infarcted area compared to untreated animals. However, only L2 increased anti-inflammatory M2-like macrophages. L2 also induced a higher density of endothelial cells and cardiomyocytes. Our data show that L2 has strong, acute, prolonged cardioprotective effects in post-MI that are mediated, at least in part, by the modulation of the post-ischemic inflammatory response and especially, by the enhancement of M2-like macrophages, thus reducing IR-induced necrotic and fibrotic effects.


Assuntos
Anti-Inflamatórios/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Peptídeo Natriurético Encefálico/uso terapêutico , Venenos de Víboras/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Fibrose , Frequência Cardíaca/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos Wistar
10.
Int J Biol Macromol ; 117: 790-799, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870815

RESUMO

Through the recent development of knowledge in biotechnology and bioinformatics, snake venoms are widely used to develop new drugs to treat diseases such as hypertension and cancer. We have previously reported that Lebetin 2 isolated from Macrovipera lebetina transmediterranea venom displays a potent anti-platelet activity and exerts a cardioprotective effect in ischemia-reperfusion (IR) injury model. Here, we report that Lebetin 2 possess an anti-tumor effect by targeting the integrin receptor function. It was thus able to inhibit both adhesion and migration of pheochromocytoma cells (PC12) and α1ß1 integrin-expressing CHO cells (CHO-α1) to type I and IV collagens. Moreover, this peptide affects proliferation of PC12 cells by modulating AKT phosphorylation. Furthermore, Lebetin 2 exhibits a potent anti-angiogenic effect as assessed in vitro and ex vivo, using both the embryo chick chorioallantoic membrane model (CAM) and rat aortic ring assay. Interestingly, the interaction mode of Lebetin 2 with the integrin α1ß1, assessed in silico, showed that the peptide represents a steric obstruction preventing the collagen from enforcing the interactions with the integrin.


Assuntos
Carcinogênese/efeitos dos fármacos , Integrina alfa1beta1/química , Integrina alfa1beta1/metabolismo , Neovascularização Patológica/tratamento farmacológico , Venenos de Víboras/química , Sequência de Aminoácidos , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Células PC12 , Domínios Proteicos , Ratos , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia , Venenos de Víboras/uso terapêutico
11.
PLoS One ; 11(9): e0162632, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27618302

RESUMO

Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3ß and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction.


Assuntos
Cardiotônicos/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Venenos de Víboras/farmacologia , Animais , Técnicas In Vitro , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/patologia , Ratos , Ratos Wistar , Transdução de Sinais
12.
J Hypertens ; 22(3): 619-27, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15076169

RESUMO

OBJECTIVE: To elucidate the mechanisms responsible for the adverse renal effects induced by dual blockade of the renin-angiotensin system (RAS) and the role of salt therein. METHODS: The effects of enalapril, losartan and their combination on blood pressure, renal haemodynamics, renal function and RAS were investigated over a wide range of doses in spontaneously hypertensive rats fed either a low-sodium or a high-sodium diet. RESULTS: In rats fed the low-sodium diet, the losartan-enalapril combination induced the same dose-dependent haemodynamic and hormonal changes as did three- to 10-fold greater doses of enalapril or losartan alone. When a strong decrease (> 50%) in blood pressure was achieved (with 10 mg/kg enalapril plus 10 mg/kg losartan, 100 mg/kg enalapril or 100 mg/kg losartan), a massive renal vasoplegia occurred and renal insufficiency developed. In addition, because of the huge release of renin, angiotensinogen concentrations were reduced, leading to a decrease in intrarenal angiotensins. In rats fed the high-sodium diet, those treated with the enalapril 30 mg/kg plus losartan 30 mg/kg combination, despite complete functional RAS blockade, exhibited smaller decreases in blood pressure and renal resistance, lesser release of renin and angiotensinogen consumption, and a normal renal function. These effects were similar to those produced by 100 mg/kg of enalapril or losartan in rats fed the high-salt diet, or by 10 mg/kg of enalapril or of losartan in rats fed the low-salt diet. CONCLUSIONS: Dual RAS blockade could be either beneficial, when sodium intake is unrestricted, or dangerous, when sodium intake is restricted.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Enalapril/farmacologia , Hipertensão Renal/tratamento farmacológico , Losartan/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Anestesia , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal , Estado de Consciência , Quimioterapia Combinada , Hipertensão Renal/fisiopatologia , Rim/fisiologia , Masculino , Ratos , Ratos Endogâmicos SHR , Circulação Renal/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA