Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gene Med ; 20(9): e3042, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953687

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP)-2 gene-activated muscle tissue fragments can regenerate large bone defects in preclinical animal models. The use of tissue fragments instead of isolated cells expedites gene-enhanced tissue engineering and may increase the possibility of clinical translation. The present in vitro study investigated whether the osteoinductive effect of BMP-2 on muscle tissue fragments can be enhanced using the heterodimers BMP-2/6 or BMP-2/7. METHODS: Skeletal muscle tissue fragments from rats were cultured in vitro for up to 20 days in normal medium, osteogenic medium or osteogenic medium supplemented with either a low (50 ng/ml) or high (200 ng/ml) concentration of recombinant human BMP-2, BMP-2/6 or BMP-2/7. Osteoinduction was evaluated by a quantitative reverse transcriptase-polymerase chain reaction, Alizarin red S staining, immunohistology and histomorphometry. RESULTS: Interestingly, BMP-2 was a significantly stronger inducer of osteogenic differentiation within muscle tissue than both heterodimers. Even the low concentration of BMP-2 elicited significantly higher levels of calcium deposition, bone-specific gene expression and protein production than the high concentration of both heterodimers. At the high concentration, BMP-2/7 had a significantly stronger osteogenic effect on muscle than BMP-2/6. CONCLUSIONS: The homodimer BMP-2 induced osteoblastogenesis in muscle faster, at a lower concentration and with a higher potency than the heterodimers BMP-2/6 or BMP-2/7. The findings of this in vitro study encourage bone repair by muscle implants in combination with BMP-2 single growth factor delivery, which might be beneficial with respect to clinical translation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Músculo Esquelético/metabolismo , Osteogênese/genética , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 6/química , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/genética , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Multimerização Proteica , Ratos Endogâmicos F344 , Proteínas Recombinantes de Fusão/farmacologia , Engenharia Tecidual/métodos
2.
J Gene Med ; 20(6): e3018, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601661

RESUMO

The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene-enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost-effective manner, allowing translation from bench to bedside. Several promising methods based on the intra-operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene-enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene-enhanced bone tissue engineering will become a clinical reality within the next few years.


Assuntos
Regeneração Óssea/genética , Engenharia Genética/métodos , Osteogênese/genética , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Animais , Ensaios Clínicos como Assunto , DNA Complementar , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA