Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340473

RESUMO

A new panel of N-sulfonylpiperidine derivatives has been designed and synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. Anti-proliferative activities of the synthesized members were tested against colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), and breast cancer (MCF-7) cell lines. Compounds 3a, 4, 8, and 9 showed the highest activities against the tested cell lines. In particular, compound 8 showed excellent activities against HCT-116, HepG-2, and MCF-7 with IC50 values of 3.94, 3.76, and 4.43 µM, respectively. Such IC50 values are comparable to vinblastine (IC50 = 3.21, 7.35, 5.83 µM, respectively) and doxorubicin (IC50 = 6.74, 7.52, 8.19 µM, respectively). In vitro VEGFR-2 inhibitory activity of the most promising molecules (3a, 4, 8, and 9) indicated that compound 8 is the highest VEGFR-2 inhibitor with an IC50 of 0.0554 µM, compared to sorafenib (IC50 = 0.0416 µM). The most promising candidates (3a, 4, 8, and 9) were subjected to flow cytometry analyses to assess their effects on the cell cycle behavior and the apoptotic power against the three tested cell lines (HCT-116, HepG-2, and MCF-7). The tested compound arrested the tumor cells at both the G2/M and Pre-G1 phases. In addition, compound 9 was proved as the most effective apoptotic inducer among the tested compounds against the tested cells. Molecular docking studies against VEGFR-2 (PDB ID: 2OH4) revealed good binding modes of the synthesized compound similar to that of sorafenib. Computational investigation of ADMET parameters revealed the drug-likeness of the synthesized compounds.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Simulação de Acoplamento Molecular , Sorafenibe , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células MCF-7 , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia
2.
Molecules ; 29(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542886

RESUMO

Cannabis sativa is one of the oldest plants utilized by humans for both economic and medical purposes. Although the use of cannabis started millennia ago in the Eastern hemisphere, its use has moved and flourished in the Western nations in more recent centuries. C. sativa is the source of psychoactive cannabinoids that are consumed as recreational drugs worldwide. The C21 aromatic hydrocarbons are restricted in their natural occurrence to cannabis (with a few exceptions). Delta-9-tetrahydrocannabinol (Δ9-THC) is the main psychoactive component in cannabis, with many pharmacological effects and various approved medical applications. However, a wide range of side effects are associated with the use of Δ9-THC, limiting its medical use. In 1966, another psychoactive cannabinoid, Delta-8-tetrahydrocannabinol (Δ8-THC) was isolated from marijuana grown in Maryland but in very low yield. Δ8-THC is gaining increased popularity due to its better stability and easier synthetic manufacturing procedures compared to Δ9-THC. The passing of the U.S. Farm Bill in 2018 led to an increase in the sale of Δ8-THC in the United States. The marketed products contain Δ8-THC from synthetic sources. In this review, methods of extraction, purification, and structure elucidation of Δ8-THC will be presented. The issue of whether Δ8-THC is a natural compound or an artifact will be discussed, and the different strategies for its chemical synthesis will be presented. Δ8-THC of synthetic origin is expected to contain some impurities due to residual amounts of starting materials and reagents, as well as side products of the reactions. The various methods of analysis and detection of impurities present in the marketed products will be discussed. The pharmacological effects of Δ8-THC, including its interaction with CB1 and CB2 cannabinoid receptors in comparison with Δ9-THC, will be reviewed.


Assuntos
Canabinoides , Cannabis , Dronabinol/análogos & derivados , Alucinógenos , Humanos , Dronabinol/farmacologia , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Alucinógenos/farmacologia
3.
Bioorg Chem ; 140: 106825, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683543

RESUMO

Avoiding the probable dangerous side effects of synthetic drugs, this study aims the identification of natural antioxidant and antitumor agents from J. integerrima leaf and floral extracts. A highly efficient and fast UPLC/ESI-qTOF-HRMS/MS screening has led to characterization of 30 flavonoids, i.e. 12 flavonols, 6 flavones, 3 dihydroflavonols, 4 anthocyanins (flower), 2 dihydroflavonols, and 3 isoflavones from both J. integerrima extracts. In addition, six major polyphenols were identified for the first time from leaf extract, and their structures were established as apigenin 7-O-ß-d-neohesperidoside (rhoifolin, 1), apigenin 8-C-ß-D-4C1-glucopyranoside (vitexin, 2), luteolin 6-C-ß-D-4C1-glucopyranoside (isoorientin, 3), 6,6″-di-C-ß-D-4C1-glucopyranosyl-methylene-biapigenin (Jatrophenol-I, 4), (E)-p-coumaric acid methyl ester (5), and (E)-ferulic acid methyl ester (6) with HRESI-MS and NMR analyses. The in vitro antioxidant activity of both extracts and major pure isolates was decided using DPPH, reducing power capability, FRAP, and ABTS radical scavenging assays, and their in vitro cytotoxicity was evaluated on Ehrlich ascites carcinoma cells (EACC), as well.The flower extract and compound 3 have shown the strongest antioxidant and cytotoxic effects. At low concentrations (25 µg/mL), they showed the highest DPPH radical scavenging ability (79.63 ± 0.42 and 76.20 ± 0.35%) regarding BHA (91.44 ± 0.29% at 100 µg/mL). In the parameter of absorbance, they exhibited higher reducing power ability (1.402 ± 0.025 and 1.178 ± 0.019%) than that of BHA (0.975 ± 0.013 at 100 µg/mL). Similarly, they proved superior FRAP (1427 ± 9.61 and 1377 ± 13.61 µmol Trolox/ 100 g) and highest ABTS activity (80.19 ± 0.55 and 68.38 ± 0.19%), which are higher activities compared to BHA (88.42 ± 0.24% at 100 µg/mL). Furthermore, all samples gave noticeable cytotoxicity at the same concentration (100 µg/mL), especially the flower extract and compound 3 which showed a relatively high effect on the viability of EACC (81.12 ± 0.24 and 77.21 ± 0.76 %, respectively) relative to vincristine reference drug (90.64 ± 0.39 %). Based on the findings, the extracts and isolates can be considered as potent antioxidant and cytotoxic natural agents, especially flower extract and isoorientin (3), which may supply novel insight into their likely application in pharmaceutical industries.


Assuntos
Antineoplásicos , Jatropha , Apigenina , Antioxidantes/farmacologia , Antocianinas , Espectrometria de Massas em Tandem , Compostos Fitoquímicos , Citotoxinas , Flavonoides
4.
Mol Divers ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162644

RESUMO

A new theobromine-derived EGFR inhibitor (2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-N-(2,6-dimethylphenyl)acetamide) has been developed that has the essential structural characteristics to interact with EGFR's pocket. The designed compound is 2,6-di ortho methylphenyl)acetamide derivative of the well-known alkaloid, theobromine, (T-1-DOMPA). Firstly, deep DFT studies have been conducted to study the optimized chemical structure, molecular orbital and chemical reactivity analysis of T-1-DOMPA. Then, T-1-DOMPA's anticancer potentialities were estimated first through a structure-based computational approach. Utilizing molecular docking, molecular dynamics, MD, simulations over 100 ns, MM-PBSA and PLIP studies, T-1-DOMPA bonded to and inhibited the EGFR protein effectively. Subsequently, the ADMET profiles of T-1-DOMPA were computed before preparation, and its drug-likeness was anticipated. Therefore, T-1-DOMPA was prepared for the purposes of scrutinizing both the design and the results obtained in silico. The in vitro potential of T-1-DOMPA against triple-negative breast cancer cell lines, MDA- MB-231, was very promising with an IC50 value of1.8 µM, comparable to the reference drug (0.9 µM), and a much higher selectivity index of 2.6. Interestingly, T-1-DOMPA inhibited three other cancer cell lines (CaCO-2, HepG-2, and A549) with IC50 values of 1.98, 2.53, and 2.39 µM exhibiting selectivity index values of 2,4, 1.9, and 2, respectively. Additionally, T-1-DOMPA prevented effectively the MDA-MB-231cell line's healing and migration abilities. Also, T-1-DOMPA's abilities to induce apoptosis were confirmed by acridine orange/ethidium bromide (AO/EB) staining assay. Finally, T-1-DOMPA caused an up-regulation of the gene expression of the apoptotic gene, Caspase-3, in the treated MDA-MB-231cell.

5.
J Enzyme Inhib Med Chem ; 38(1): 2220579, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288786

RESUMO

A group of EGFR inhibitors derived from thieno[2,3-d]pyrimidine nucleus was designed, synthesised, and examined as anti-proliferative lead compounds. MCF-7 and A549 cell lines were inhibited by 5b, the most active member. It had inhibitory partialities of 37.19 and 204.10 nM against EGFRWT and EGFRT790M, respectively. Compound 5b was 2.5 times safer against the WI-38 normal cell lines than erlotinib. Also, it demonstrated considerable potentialities for both early and late apoptosis induction in A549. Simultaneously, 5b arrested A549's growth at G1 and G2/M phases. Harmoniously, 5b upregulated the BAX and downregulated the Bcl-2 genes by 3-fold and increased the BAX/Bcl-2 ratio by 8.3-fold comparing the untreated A549 cells. Molecular docking against EGFRWT and EGFRT790M indicated the correct binding modes. Furthermore, MD simulations confirmed the precise binding of 5b against the EGFR protein over 100 ns. Finally, various computational ADMET studies were carried out and indicated high degrees of drug-likeness and safety.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Humanos , Antineoplásicos/química , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Relação Estrutura-Atividade
6.
Drug Dev Res ; 84(6): 1247-1265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232504

RESUMO

Following the pharmacophoric features of vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, a novel thieno[2,3-d]pyrimidine derivative has been designed and its activity against VEGFR-2 has been demonstrated by molecular docking studies that showed an accurate binding mode and an excellent binding energy. Furthermore, the recorded binding was confirmed by a series of molecular dynamics simulation studies, which also revealed precise energetic, conformational, and dynamic changes. Additionally, molecular mechanics with generalized Born and surface area solvation and polymer-induced liquid precursors studies were conducted and verified the results of the MD simulations. Next, in silico absorption, distribution, metabolism, excretion, and toxicity studies have also been conducted to examine the general drug-like nature of the designed candidate. According to the previous results, the thieno[2,3-d]pyrimidine derivative was synthesized. Fascinatingly, it inhibited VEGFR-2 (IC50 = 68.13 nM) and demonstrated strong inhibitory activity toward human liver (HepG2), and prostate (PC3) cell lines with IC50 values of 6.60 and 11.25 µM, respectively. As well, it was safe and showed a high selectivity index against normal cell lines (WI-38). Finally, the thieno[2,3-d]pyrimidine derivative arrested the growth of the HepG2 cells at the G2/M phase inducing both early and late apoptosis. These results were further confirmed through the ability of the thieno[2,3-d]pyrimidine derivative to induce significant changes in the apoptotic genes levels of caspase-3, caspase-9, Bcl-2 associated X-protein, and B-cell lymphoma 2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Descoberta de Drogas , Pirimidinas/farmacologia , Pirimidinas/química
7.
Saudi Pharm J ; 31(12): 101852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028225

RESUMO

VEGFR-2 is a significant target in cancer treatment, inhibiting angiogenesis and impeding tumor growth. Utilizing the essential pharmacophoric structural properties, a new semi-synthetic theobromine analogue (T-1-MBHEPA) was designed as VEGFR-2 inhibitor. Firstly, T-1-MBHEPA's stability and reactivity were indicated through several DFT computations. Additionally, molecular docking, MD simulations, MM-GPSA, PLIP, and essential dynamics (ED) experiments suggested T-1-MBHEPA's strong binding capabilities to VEGFR-2. Its computational ADMET profiles were also studied before the semi-synthesis and indicated a good degree of drug-likeness. T-1-MBHEPA was then semi-synthesized to evaluate the design and the in silico findings. It was found that, T-1-MBHEPA inhibited VEGFR-2 with an IC50 value of 0.121 ± 0.051 µM, as compared to sorafenib which had an IC50 value of 0.056 µM. Similarly, T-1-MBHEPA inhibited the proliferation of HepG2 and MCF7 cell lines with IC50 values of 4.61 and 4.85 µg/mL respectively - comparing sorafenib's IC50 values which were 2.24 µg/mL and 3.17 µg/mL respectively. Interestingly, T-1-MBHEPA revealed a noteworthy IC50 value of 80.0 µM against the normal cell lines exhibiting exceptionally high selectivity indexes (SI) of 17.4 and 16. 5 against the examined cell lines, respectively. T-1-MBHEPA increased the percentage of apoptotic MCF7 cells in early and late stages, respectively, from 0.71 % to 7.22 % and from 0.13 % to 2.72 %, while the necrosis percentage was increased to 11.41 %, in comparison to 2.22 % in control cells. Furthermore, T-1-MBHEPA reduced the production of pro-inflammatory cytokines TNF-α and IL-2 in the treated MCF7 cells by 33 % and 58 %, respectively indicating an additional anti-angiogenic mechanism. Also, T-1-MBHEPA decreased significantly the potentialities of MCF7 cells to heal and migrate from 65.9 % to 7.4 %. Finally, T-1-MBHEPA's oral treatment didn't show toxicity on the liver function (ALT and AST) and the kidney function (creatinine and urea) levels of mice.

8.
J Enzyme Inhib Med Chem ; 37(1): 1389-1403, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35577416

RESUMO

A library of modified VEGFR-2 inhibitors was designed as VEGFR-2 inhibitors. Virtual screening was conducted for the hypothetical library using in silico docking, ADMET, and toxicity studies. Four compounds exhibited high in silico affinity against VEGFR-2 and an acceptable range of the drug-likeness. These compounds were synthesised and subjected to in vitro cytotoxicity assay against two cancer cell lines besides VEGFR-2 inhibitory determination. Compound D-1 showed cytotoxic activity against HCT-116 cells almost double that of sorafenib. Compounds A-1, C-6, and D-1 showed good IC50 values against VEGFR-2. Compound D-1 markedly increased the levels of caspase-8 and BAX expression and decreased the anti-apoptotic Bcl-2 level. Additionally, compound D-1 caused cell cycle arrest at pre-G1 and G2-M phases in HCT-116 cells and induced apoptosis at both early and late apoptotic stages. Compound D-1 decreased the level of TNF-α and IL6 and inhibited TNF-α and IL6. MD simulations studies were performed over 100 ns.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interleucina-6 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
9.
J Enzyme Inhib Med Chem ; 37(1): 1903-1917, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35801403

RESUMO

A thiazolidine-2,4-dione nucleus was molecularly hybridised with the effective antitumor moieties; 2-oxo-1,2-dihydroquinoline and 2-oxoindoline to obtain new hybrids with potential activity against VEGFR-2. The cytotoxic effects of the synthesised derivatives against Caco-2, HepG-2, and MDA-MB-231 cell lines were investigated. Compound 12a was found to be the most potent candidate against the investigated cell lines with IC50 values of 2, 10, and 40 µM, respectively. Furthermore, the synthesised derivatives were tested in vitro for their VEGFR-2 inhibitory activity showing strong inhibition. Moreover, an in vitro viability study against Vero non-cancerous cell line was investigated and the results reflected a high safety profile of all tested compounds. Compound 12a was further investigated for its apoptotic behaviour by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Molecular dynamic simulations authenticated the high affinity, accurate binding, and perfect dynamics of compound 12a against VEGFR-2.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxindóis , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Tiazolidinas/farmacologia
10.
J Enzyme Inhib Med Chem ; 37(1): 2206-2222, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35980113

RESUMO

New nicotinamide derivatives 6, 7, 10, and 11 were designed and synthesised based on the essential features of the VEGFR-2 inhibitors. Compound 10 revealed the highest anti-proliferative activities with IC50 values of 15.4 and 9.8 µM against HCT-116 and HepG2, respectively compared to sorafenib (IC50 = 9.30 and 7.40 µM). Compound 7 owned promising cytotoxic activities with IC50 values of 15.7 and 15.5 µM against the same cell lines, respectively. Subsequently, the VEGFR-2 inhibitory activities were assessed for the titled compounds to exhibit VEGFR-2 inhibition with sub-micromolar IC50 values. Moreover, compound 7 induced the cell cycle cessation at the cycle at %G2-M and G0-G1phases, and induced apoptosis in the HCT-116. Compounds 7 and 10 reduced the levels of TNF-α by 81.6 and 84.5% as well as IL-6 by 88.4 and 60.9%, respectively, compared to dexamethasone (82.4 and 93.1%). In silico docking, molecular dynamics simulations, ADMET, and toxicity studies were carried out.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
11.
J Enzyme Inhib Med Chem ; 37(1): 1053-1076, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35821615

RESUMO

A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 µM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases , Relação Estrutura-Atividade
12.
J Enzyme Inhib Med Chem ; 37(1): 2191-2205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35975321

RESUMO

New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.


Assuntos
Antineoplásicos , Isatina , Quinolinas , Animais , Antineoplásicos/farmacologia , Células CACO-2 , Proliferação de Células , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Células Vero
13.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955547

RESUMO

Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Proteínas não Estruturais Virais/metabolismo
14.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805916

RESUMO

In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
15.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144596

RESUMO

Based on the pharmacophoric features of EGFR inhibitors, a new semisynthetic theobromine-derived compound was designed to interact with the catalytic pocket of EGFR. Molecular docking against wild (EGFRWT; PDB: 4HJO) and mutant (EGFRT790M; PDB: 3W2O) types of EGFR-TK indicated that the designed theobromine derivative had the potential to bind to that pocket as an antiangiogenic inhibitor. The MD and MM-GBSA experiments identified the exact binding with optimum energy and dynamics. Additionally, the DFT calculations studied electrostatic potential, stability, and total electron density of the designed theobromine derivative. Both in silico ADMET and toxicity analyses demonstrated its general likeness and safety. We synthesized the designed theobromine derivative (compound XI) which showed an IC50 value of 17.23 nM for EGFR inhibition besides IC50 values of 21.99 and 22.02 µM for its cytotoxicity against A549 and HCT-116 cell lines, respectively. Interestingly, compound XI expressed a weak cytotoxic potential against the healthy W138 cell line (IC50 = 49.44 µM, 1.6 times safer than erlotinib), exhibiting the high selectivity index of 2.2. Compound XI arrested the growth of A549 at the G2/M stage and increased the incidence of apoptosis.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Teobromina/farmacologia
16.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889478

RESUMO

A nicotinamide-based derivative was designed as an antiproliferative VEGFR-2 inhibitor with the key pharmacophoric features needed to interact with the VEGFR-2 catalytic pocket. The ability of the designed congener ((E)-N-(4-(1-(2-(4-benzamidobenzoyl)hydrazono)ethyl)phenyl)nicotinamide), compound 10, to bind with the VEGFR-2 enzyme was demonstrated by molecular docking studies. Furthermore, six various MD simulations studies established the excellent binding of compound 10 with VEGFR-2 over 100 ns, exhibiting optimum dynamics. MM-GBSA confirmed the proper binding with a total exact binding energy of -38.36 Kcal/Mol. MM-GBSA studies also revealed the crucial amino acids in the binding through the free binding energy decomposition and declared the interactions variation of compound 10 inside VEGFR-2 via the Protein-Ligand Interaction Profiler (PLIP). Being new, its molecular structure was optimized by DFT. The DFT studies also confirmed the binding mode of compound 10 with the VEGFR-2. ADMET (in silico) profiling indicated the examined compound's acceptable range of drug-likeness. The designed compound was synthesized through the condensation of N-(4-(hydrazinecarbonyl)phenyl)benzamide with N-(4-acetylphenyl)nicotinamide, where the carbonyl group has been replaced by an imine group. The in-vitro studies were consonant with the obtained in silico results as compound 10 prohibited VEGFR-2 with an IC50 value of 51 nM. Compound 10 also showed antiproliferative effects against MCF-7 and HCT 116 cancer cell lines with IC50 values of 8.25 and 6.48 µM, revealing magnificent selectivity indexes of 12.89 and 16.41, respectively.


Assuntos
Antineoplásicos , Desenho de Fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Niacinamida/química , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
17.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807326

RESUMO

VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0-G1 phase and a total apoptosis increase from 3.05 to 19.82%-6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interleucina-6/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/farmacologia
18.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164122

RESUMO

The urease enzyme has been an important target for the discovery of effective pharmacological and agricultural products. Thirteen regio-selectively alkylated benzimidazole-2-thione derivatives have been designed to carry the essential features of urease inhibitors. The urease enzyme was isolated from Helicobacter pylori as a recombinant urease utilizing the His-tag method. The isolated enzyme was purified and characterized using chromatographic and FPLC techniques showing a maximal activity of 200 mg/mL. Additionally, the commercial Jack bean urease was purchased and included in this study for comparative and mechanistic investigations. The designed compounds were synthesized and screened for their inhibitory activity against the two ureases. Compound 2 inhibited H. pylori and Jack bean ureases with IC50 values of 0.11; and 0.26 mM; respectively. While compound 5 showed IC50 values of 0.01; and 0.29 mM; respectively. Compounds 2 and 5 were docked against Helicobacter pylori urease (PDB ID: 1E9Y; resolution: 3.00 Å) and exhibited correct binding modes with free energy (ΔG) values of -9.74 and -13.82 kcal mol-1; respectively. Further; the in silico ADMET and toxicity properties of 2 and 5 indicated their general safeties and likeness to be used as drugs. Finally, the compounds' safety was authenticated by an in vitro cytotoxicity assay against fibroblast cells.


Assuntos
Benzimidazóis/química , Inibidores Enzimáticos/química , Helicobacter pylori/enzimologia , Simulação de Acoplamento Molecular , Urease , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Helicobacter pylori/genética , Urease/antagonistas & inibidores , Urease/biossíntese , Urease/genética , Urease/isolamento & purificação
19.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209006

RESUMO

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Assuntos
Artemisia/química , COVID-19/enzimologia , Cromonas/química , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Tratamento Farmacológico da COVID-19
20.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268738

RESUMO

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Assuntos
Artemisia , Proteases 3C de Coronavírus , Flavonoides , SARS-CoV-2 , Animais , Humanos , Masculino , Ratos , Artemisia/química , Artemisia/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Teoria da Densidade Funcional , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Flavonoides/farmacologia , Dose Letal Mediana , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/enzimologia , SARS-CoV-2/isolamento & purificação , Pele/efeitos dos fármacos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA