Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 057102, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364150

RESUMO

The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part. These unusual properties translate into enhanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably, increases due to particle interactions.

2.
Phys Rev Lett ; 132(8): 088301, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457713

RESUMO

We study the dynamics of micron-sized particles on a layer of motile cells. This cell carpet acts as an active bath that propels passive tracer particles via direct mechanical contact. The resulting nonequilibrium transport shows a crossover from superdiffusive to normal-diffusive dynamics. The particle displacement distribution is distinctly non-Gaussian even at macroscopic timescales exceeding the measurement time. We obtain the distribution of diffusion coefficients from the experimental data and introduce a model for the displacement distribution that matches the experimentally observed non-Gaussian statistics. We argue why similar transport properties are expected for many composite active matter systems.

3.
Soft Matter ; 20(19): 3910-3922, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700098

RESUMO

Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.

4.
Soft Matter ; 20(26): 5258-5259, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888439

RESUMO

Correction for 'A passive star polymer in a dense active bath: insights from computer simulations' by Ramanand Singh Yadav et al., Soft Matter, 2024, 20, 3910-3922, https://doi.org/10.1039/D4SM00144C.

5.
Environ Sci Technol ; 58(20): 8946-8954, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736287

RESUMO

Molecular diffusion of chemical species in subsurface environments─rock formations, soil sediments, marine, river, and lake sediments─plays a critical role in a variety of dynamic processes, many of which affect water chemistry. We investigate and demonstrate the occurrence of anomalous (non-Fickian) diffusion behavior, distinct from classically assumed Fickian diffusion. We measured molecular diffusion through a series of five chalk and dolomite rock samples over a period of about two months. We demonstrate that in all cases, diffusion behavior is significantly different than Fickian. We then analyze the results using a continuous time random walk framework that can describe anomalous diffusion in heterogeneous porous materials such as rock. This methodology shows extreme long-time tailing of tracer advance as compared to conventional Fickian diffusion processes. The finding that distinct anomalous diffusion occurs ubiquitously implies that diffusion-driven processes in subsurface zones should be analyzed using tools that account for non-Fickian diffusion.


Assuntos
Sedimentos Geológicos , Difusão , Porosidade
6.
Soft Matter ; 19(45): 8802-8819, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37946588

RESUMO

We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.

7.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

8.
Phys Chem Chem Phys ; 25(3): 1513-1537, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36546878

RESUMO

A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.


Assuntos
Disciplinas das Ciências Biológicas , Imagem Individual de Molécula , Biofísica , Disciplinas das Ciências Biológicas/métodos
9.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832518

RESUMO

Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiving methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous particle dynamics is described by the fractional Ornstein-Uhlenbeck process, for which we establish new estimators for the parameters. Specifically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.

10.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832659

RESUMO

We introduce a refined way to diffusely explore complex networks with stochastic resetting where the resetting site is derived from node centrality measures. This approach differs from previous ones, since it not only allows the random walker with a certain probability to jump from the current node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that can reach all other nodes faster. Following this strategy, we consider the resetting site to be the geometric center, the node that minimizes the average travel time to all the other nodes. Using the established Markov chain theory, we calculate the Global Mean First Passage Time (GMFPT) to determine the search performance of the random walk with resetting for different resetting node candidates individually. Furthermore, we compare which nodes are better resetting node sites by comparing the GMFPT for each node. We study this approach for different topologies of generic and real-life networks. We show that, for directed networks extracted for real-life relationships, this centrality focused resetting can improve the search to a greater extent than for the generated undirected networks. This resetting to the center advocated here can minimize the average travel time to all other nodes in real networks as well. We also present a relationship between the longest shortest path (the diameter), the average node degree and the GMFPT when the starting node is the center. We show that, for undirected scale-free networks, stochastic resetting is effective only for networks that are extremely sparse with tree-like structures as they have larger diameters and smaller average node degrees. For directed networks, the resetting is beneficial even for networks that have loops. The numerical results are confirmed by analytic solutions. Our study demonstrates that the proposed random walk approach with resetting based on centrality measures reduces the memoryless search time for targets in the examined network topologies.

11.
Philos Trans A Math Phys Eng Sci ; 380(2224): 20210157, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35400188

RESUMO

We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and income mobility, the feasibility of an individual to change their position in the income rankings. For this purpose, we use the properties of an established model for income growth that includes 'resetting' as a stabilizing force to ensure stationary dynamics. We find that the dynamics of inequality is regime-dependent: it may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodicity. Mobility measures, conversely, are always stable over time, but suggest that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the income share of the top earners in the USA, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterizes inequality and immobility. Our results can serve as a simple rationale for the observed real-world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe. This article is part of the theme issue 'Kinetic exchange models of societies and economies'.


Assuntos
Renda , Movimento (Física)
12.
Phys Chem Chem Phys ; 24(31): 18482-18504, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35838015

RESUMO

How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD 〈x2(Δ)〉 and TAMSD quantifiers-of FBM featuring (where H is the Hurst exponent and Δ is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity Dα(t) ∝ tα-1-germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with 〈x2(Δ)〉 ∝ Δα+2H-1 and . We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when α + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < α < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.


Assuntos
Envelhecimento , Imagem Individual de Molécula , Animais , Difusão , Movimento (Física) , Distribuição Normal
13.
Phys Rev Lett ; 126(12): 128101, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834804

RESUMO

Protein conformational fluctuations are highly complex and exhibit long-term correlations. Here, molecular dynamics simulations of small proteins demonstrate that these conformational fluctuations directly affect the protein's instantaneous diffusivity D_{I}. We find that the radius of gyration R_{g} of the proteins exhibits 1/f fluctuations that are synchronous with the fluctuations of D_{I}. Our analysis demonstrates the validity of the local Stokes-Einstein-type relation D_{I}∝1/(R_{g}+R_{0}), where R_{0}∼0.3 nm is assumed to be a hydration layer around the protein. From the analysis of different protein types with both strong and weak conformational fluctuations, the validity of the Stokes-Einstein-type relation appears to be a general property.


Assuntos
Modelos Químicos , Proteínas/química , Água/química , Difusão , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Conformação Proteica , Soluções
14.
Phys Chem Chem Phys ; 23(48): 27195-27206, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34821240

RESUMO

Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.


Assuntos
Muramidase/química , Adsorção , Animais , Galinhas , Concentração de Íons de Hidrogênio , Modelos Moleculares , Método de Monte Carlo , Muramidase/metabolismo , Prótons
15.
Chaos ; 31(3): 033108, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33810715

RESUMO

The stable operation of a turbulent combustor is not completely silent; instead, there is a background of small amplitude aperiodic acoustic fluctuations known as combustion noise. Pressure fluctuations during this state of combustion noise are multifractal due to the presence of multiple temporal scales that contribute to its dynamics. However, existing models are unable to capture the multifractality in the pressure fluctuations. We conjecture an underlying fractional dynamics for the thermoacoustic system and obtain a fractional-order model for pressure fluctuations. The data from this model has remarkable visual similarity to the experimental data and also has a wide multifractal spectrum during the state of combustion noise. Quantitative similarity with the experimental data in terms of the Hurst exponent and the multifractal spectrum is observed during the state of combustion noise. This model is also able to produce pressure fluctuations that are qualitatively similar to the experimental data acquired during intermittency and thermoacoustic instability. Furthermore, we argue that the fractional dynamics vanish as we approach the state of thermoacoustic instability.

16.
Phys Chem Chem Phys ; 22(48): 27955-27965, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33073805

RESUMO

In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.


Assuntos
Doxorrubicina/química , Dióxido de Silício/química , Adsorção , Difusão , Modelos Químicos , Simulação de Dinâmica Molecular
17.
Chaos ; 30(12): 123103, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380056

RESUMO

The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Lévy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Lévy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Lévy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point.


Assuntos
Modelos Biológicos , Ruído , Animais , Humanos , Processos Estocásticos
18.
Entropy (Basel) ; 22(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353060

RESUMO

Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.

19.
Soft Matter ; 15(12): 2526-2551, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30734041

RESUMO

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.

20.
Chem Rev ; 117(5): 4342-4375, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28156096

RESUMO

The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.


Assuntos
Células , Organelas/química , Elasticidade , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA