RESUMO
We assessed whether the ratio of dietary n-6/n-3 polyunsaturated fatty acids (PUFA) during egg formation engenders transgenerational maternal effects in domestic chicks. We analyzed yolk lipid and hormone concentrations, and HPA-axis activity in hens fed a control diet (high n-6/n-3 ratio) or a diet enriched in n-3 PUFAs (low n-6/n-3 ratio) for 6 consecutive weeks. Their chicks were tested for neophobia during the first week of life. We found higher corticosterone metabolites in droppings of hens fed the diet enriched in n-3 and significantly higher concentrations of yolk progesterone, androstenedione, and estradiol in their eggs compared to controls. Chicks of hens fed the n-3 enriched diet showed a lower body mass at hatch than controls and expressed higher neophobia when exposed to a novel object. These results add support to the hypothesis that the nutritional state of female birds produces variation in yolk hormone levels and engender maternal effects.
Assuntos
Androstenodiona/metabolismo , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Comportamento Animal/fisiologia , Gema de Ovo/metabolismo , Estradiol/metabolismo , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Progesterona/metabolismo , Animais , Galinhas , FemininoRESUMO
In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors.
Assuntos
Comportamento Animal/efeitos dos fármacos , Galinhas/crescimento & desenvolvimento , Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Hormônios/farmacologia , Aprendizagem/efeitos dos fármacos , Progesterona/farmacologia , Testosterona/farmacologia , Androgênios/farmacologia , Animais , Animais Recém-Nascidos , Embrião de Galinha , Gema de Ovo/química , Estrogênios/farmacologia , Feminino , Óleos de Peixe , Preferências Alimentares/efeitos dos fármacos , Odorantes , Gravidez , Progestinas/farmacologiaRESUMO
Prenatal maternal stress (PMS) is known to shape the phenotype of the first generation offspring (F1) but according to some studies, it could also shape the phenotype of the offspring of the following generations. We previously showed in the Japanese quail that PMS increased the emotional reactivity of F1 offspring in relation to (i) a variation in the levels of some histone post-translational modification (H3K27me3) in their brains and (ii) a modulation of the hormonal composition of the eggs from which they hatched. Here, we wondered whether PMS could also influence the behaviour of the second (F2) and third (F3) generation offspring due to the persistence of the specific marks we identified. Using a principal component analysis, we found that PMS influenced F2 and F3 quail profiles with subtle differences between generations. It increased F2 neophobia, F3 fearfulness and F3 neophobia but only in females. Interestingly, we did not find any variations in the level of histone post-translational modification in F3 brains and we observed inconsistent modulations of androstenedione levels in F1 and F2 eggs. Although they may vary over generations, our results demonstrate that PMS can have phenotypical effects into the third generation.
RESUMO
The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.
Assuntos
Coturnix , Fotoperíodo , Animais , Masculino , Coturnix/fisiologia , Hipocampo , Cognição , Neurogênese , MamíferosRESUMO
Prenatal maternal stress (PMS) influences many facets of offspring's phenotype including morphology, behaviour and cognitive abilities. Recent research suggested that PMS also induced epigenetic modifications. In the present study, we analysed, in the Japanese quail, the effects of PMS on the emotional reactivity and cognitive abilities of the F1 offspring. We also investigated in the hippocampus, the paraventricular hypothalamic nucleus and subnuclei of the arcopallium/amygdala the level of two histone post-translational modifications, H3K4me2 and H3K27me3, known to be impacted by stress. We found that PMS does not affect F1 quail's learning abilities but increases their emotional reactivity. Moreover, we demonstrated that PMS induced an increased density of H3K27me3 positive cells, in the hippocampus, paraventricular hypothalamic nucleus and dorsal nucleus of the amygdala, but not variations of H3K4me2. As these brain regions are involved in the control of vertebrates' emotional responses, the effect of PMS on the epigenetic mark H3K27me3 could possibly be a mechanism involved in the behavioural effects we observed in F1 quail.
Assuntos
Coturnix , Histonas , Animais , Comportamento Animal , Coturnix/genética , Epigênese Genética , Feminino , Histonas/genética , Gravidez , CodornizRESUMO
The neural system underlying maternal caregiving has often been studied using laboratory rodents and a few other mammalian species. This research shows that the medial preoptic area (mPOA) integrates sensory cues from the young that, along with hormonal and other environmental signals, control maternal acceptance of neonates. The mPOA then activates the mesolimbic system to drive maternal motivation and caregiving activities. How components of this neural system respond to maternal experience and exposure to young in non-mammals has rarely been examined. To gain more insight into this question, virgin female Japanese quail (Coturnix japonica) were induced to be maternal through four days of continuous exposure to chicks (Maternal), or were not exposed to chicks (Non-Maternal). Chicks were removed overnight from the Maternal group and half the females from each group were then exposed to chicks for 90 minutes (Exposed), or not exposed to chicks (Non-Exposed), before euthanasia. The number of Fos-immunoreactive (Fos-ir) cells was examined as a marker of neuronal activation. As expected, repeated exposure to chicks induced caregiving behavior in the Maternal females, which persisted after the overnight separation, suggesting the formation of a maternal memory. In contrast, Non-Maternal females were aggressive and rejected the chicks when exposed to them. Exposed females, whether or not they were given prior experience with chicks (i.e., regardless if they accepted or rejected chicks during the exposure before euthanasia), had more Fos-ir cells in the mPOA compared to Non-Exposed females. In the nucleus accumbens (NAC), the number of Fos-ir cells was high in all Maternal females whether or not they were Exposed to chicks again before euthanasia. In the lateral bed nucleus of the stria terminalis, a site involved in general stress responding, groups did not differ in the number of Fos-ir cells. These data indicate a conserved role for the mPOA and NAC in maternal caregiving across vertebrates, with the mPOA acutely responding to the salience rather than valence of offspring cues, and the NAC showing longer-term changes in activity after a positive maternal experience even without a recent exposure to young.
Assuntos
Coturnix , Área Pré-Óptica , Animais , Feminino , Humanos , Recém-Nascido , Comportamento Materno , Núcleo Accumbens/metabolismo , Área Pré-Óptica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
The Japanese quail is a powerful model to characterize behavioral, physiological, and neurobiological processes in Galliformes. Behavioral tests have already been adapted for quail to assess memory systems, but despite the pivotal role of the hippocampus in this cognitive process, its involvement in spatial memory has not been demonstrated in this species. In this study, lesions were created in the hippocampus of Japanese quail, and both lesioned and control quail were tested for spatial and cue-based learning performances. These hippocampal lesions specifically impacted spatial learning performance, but spared learning performance when birds could solve the task using their cue-based memory. These findings, thus, highlight that the hippocampus plays a crucial role and is essential for spatial declarative memory. Future studies could aim to elucidate the cellular or molecular mechanisms involved in this form of memory.
Assuntos
Coturnix/fisiologia , Sinais (Psicologia) , Hipocampo/fisiologia , Memória Espacial/fisiologia , Animais , MasculinoRESUMO
Chronic stress is a strong modulator of cognitive processes, such as learning and memory. There is, however, great within-individual variation in how an animal perceives and reacts to stressors. These differences in coping with stress modulate the development of stress-induced memory alterations. The present study investigated whether and how chronic stress and individual emotionality interrelate and influence memory performances and brain neurogenesis in birds. For that, we used two lines of Japanese quail (Coturnix japonica) with divergent emotionality levels. Highly (E+) and less (E-) emotional quail were submitted to chronic unpredictable stress (CUS) for 3 weeks and trained in a spatial task and a discrimination task, a form of cue-based memory. E + and E- birds were also used to assess the impact of CUS and emotionality on neurogenesis within the hippocampus and the striatum. CUS negatively impacted spatial memory, and cell proliferation, and survival in the hippocampus. High emotionality was associated with a decreased hippocampal neurogenesis. CUS improved discrimination performances and favored the differentiation of newborn cells into mature neurons in the striatum, specifically in E+ birds. Our results provide evidence that CUS consequences on memory and neural plasticity depends both on the memory system and individual differences in behavior.
Assuntos
Corpo Estriado/fisiologia , Emoções/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Neurogênese/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Proliferação de Células/fisiologia , Coturnix , Sinais (Psicologia) , Masculino , Aprendizagem em Labirinto/fisiologia , Comportamento Espacial/fisiologiaRESUMO
Avoidance of novelty, termed neophobia, protects animals from potential dangers but can also impair their adaptation to novel environments or food resources. This behaviour is particularly well described in birds but the neurobiological correlates remain unexplored. Here, we measured neuronal activity in the amygdala and the striatum, two brain regions believed to be involved in novelty detection, by labelling the early gene c-fos following chicks exposure to a novel food (NF), a novel object (NO) or a familiar food (FF). NF and NO chicks showed significantly longer latencies to touch the food, less time eating and emitted more fear-vocalizations than control chicks. Latency to touch the food was also longer for NO than for NF chicks. Significantly higher densities of c-fos positive cells were present in all the nuclei of the arcopallium/amygdala of NF and NO chicks compared to FF chicks. Also, NO chicks showed higher positive cell densities than NF chicks in the posterior amygdaloid, the intermediate and the medial arcopallium. Exposure to novel food or object induced a similar increase in c-fos expression in the nucleus accumbens and the medial striatum. Our data provide evidence activation of the arcopallium/amygdala is specific of the type of novelty. The activation of striatum may be more related to novelty seeking.
Assuntos
Tonsila do Cerebelo/metabolismo , Aprendizagem da Esquiva/fisiologia , Corpo Estriado/metabolismo , Comportamento Exploratório/fisiologia , Alimentos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Galinhas , Medo , Masculino , Neurônios/metabolismo , Reconhecimento PsicológicoRESUMO
In sheep, the onset of filial bonding relies on early intake of colostrum. The aim of our work was to describe in the newborn lamb housed with its mother the immediate post-ingestive effects of colostrum intake, in terms of behaviour and brain activity. In Experiment 1, lambs received five nasogastric infusions of colostrum, or saline, or sham intubations during the first 6 h after birth. Mother-young interactions were recorded before and after the first, third and fifth infusions. The activity of the dam and of the young, which diminished over time in all groups, was temporarily increased in both partners just after each intubation procedure. The number of high-pitched bleats was significantly lower in lambs that received colostrum than in the sham group, suggesting soothing or satiating properties of colostrum. In Experiment 2, newborn lambs received a single nasogastric infusion of colostrum or saline 4.5 h after birth, or were sham intubated. Neuronal activation was investigated 1.5 h later for maximum c-Fos activity. Infusion of colostrum and saline induced different patterns of c-Fos-like immunoreactivity in the paraventricular and supraoptic nuclei of the hypothalamus as compared with the sham group. A specific oxytocinergic/vasopressinergic (OT/VSP) cell population in the paraventricular nucleus was activated following colostrum and saline infusion, but not sham intubation. Only colostrum induced the activation of the cortical amygdala and insular cortex, two structures involved in learning, associative processes, reward and emotion. We hypothesize that filial bonding may be triggered through colostrum-rewarded learning/calming processes and that the OT/VSP system may play a role.
Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Colostro/fisiologia , Comportamento Materno/fisiologia , Apego ao Objeto , Animais , Animais Recém-Nascidos , Contagem de Células , Ingestão de Alimentos/fisiologia , Feminino , Imuno-Histoquímica , Lactação/fisiologia , Masculino , Neurofisinas/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ovinos , Coloração e Rotulagem , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
The cytoskeletal protein doublecortin (DCX) is a marker for neuronal cells retaining high potential for structural plasticity, originating from both embryonic and adult neurogenic processes. Some of these cells have been described in the subcortical white matter of neonatal and postnatal mammals. In mice and humans it has been shown they are young neurons migrating through the white matter after birth, reaching the cortex in a sort of protracted neurogenesis. Here we show that DCX+ cells in the white matter of neonatal and young Cetartiodactyla (dolphin and sheep) form large clusters which are not newly generated (in sheep, and likely neither in dolphins) and do not reach the cortical layers, rather appearing "trapped" in the white matter tissue. No direct contact or continuity can be observed between the subventricular zone region and the DCX+ clusters, thus indicating their independence from any neurogenic source (in dolphins further confirmed by the recent demonstration that periventricular neurogenesis is inactive since birth). Cetartiodactyla include two orders of large-brained, relatively long-living mammals (cetaceans and artiodactyls) which were recognized as two separate monophyletic clades until recently, yet, despite the evident morphological distinctions, they are monophyletic in origin. The brain of Cetartiodactyla is characterized by an advanced stage of development at birth, a feature that might explain the occurrence of "static" cell clusters confined within their white matter. These results further confirm the existence of high heterogeneity in the occurrence, distribution and types of structural plasticity among mammals, supporting the emerging view that multiple populations of DCX+, non-newly generated cells can be abundant in large-brained, long-living species.
Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Substância Branca/citologia , Substância Branca/crescimento & desenvolvimento , Anatomia Comparada , Animais , Golfinho Nariz-de-Garrafa , Encéfalo/metabolismo , Movimento Celular , Proliferação de Células , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Masculino , Neurogênese , Carneiro Doméstico , Especificidade da Espécie , Stenella , Substância Branca/metabolismoRESUMO
Recent studies provided evidence that a personality trait such as a trait for a high or a low emotionality can either promotes or impairs learning and memory performances. This variability can be partly explained because this trait may have opposite effect on memory performances depending on the memory system involved. The present study investigated in Japanese quail the relationships between emotionality and two forms of memory, spatial- memory and cue-based memory. We showed that birds with a high emotionality trait (E+), compared with birds with a low emotionality trait (E-), reached slowly but more accurately the spatial location of a rewarded cup in an arena that contains 8 identical cups. Then a second cohort of E + and E- quails was trained to solve a dual spatial/cued task in which they could use either their spatial or cue-based memory. Whereas E + birds predominantly solved the task using their spatial memory, E- birds preferentially used their cue-based memory. These findings demonstrate that a trait for a high emotionality, can influence spatial memory performances but also contributes to favor the selection of this form of memory.
Assuntos
Comportamento Animal/fisiologia , Coturnix/fisiologia , Sinais (Psicologia) , Emoções/fisiologia , Rememoração Mental/fisiologia , Personalidade/fisiologia , Memória Espacial/fisiologia , Animais , MasculinoRESUMO
The influence of embryonic microclimate on the behavioural development of birds remains unexplored. In this study, we experimentally tested whether chronic exposure to suboptimal temperatures engendered plasticity in the expression of fear-related behaviours and in the expression of the corticotropin-releasing factor in the brains of domestic chicks (Gallus g. domesticus). We compared the neurobehavioural phenotypes of a control group of chicks incubated in an optimal thermal environment (37.8 °C) with those of a group of experimental chicks exposed chronically in ovo to suboptimal temperatures (27.2 °C for 1 hour twice a day). Chronic exposure to a suboptimal temperature delayed hatching and decreased growth rate and experimental chicks had higher neophobic responses than controls in novel food and novel environment tests. In addition, experimental chicks showed higher expression of corticotropin-releasing factor than did controls in nuclei of the amygdala, a structure involved in the regulation of fear-related behaviours. In this study, we report the first evidence of the strong but underappreciated role of incubation microclimate on the development of birds' behaviour and its neurobiological correlates.
Assuntos
Comportamento Animal , Regulação da Temperatura Corporal , Galinhas/fisiologia , Medo/fisiologia , Sistemas Neurossecretores/fisiologia , Temperatura , Animais , Hormônio Liberador da Corticotropina/metabolismoRESUMO
The periaqueductal gray (PAG) is a mesencephalic brain structure organised in subdivisions with specific anatomical connections with the rest of the brain. These connections support the different PAG functions and especially its role in emotion. Mainly described in territorial and predatory mammals, examination of the PAG connections suggests an opposite role of the ventral and the dorsal/lateral PAG in passive and active coping style, respectively. In mammals, the organisation of PAG connections may reflect the coping style of each species. Based on this hypothesis, we investigated the anatomical connections of the PAG in sheep, a gregarious and prey species. Since emotional responses expressed by sheep are typical of active coping style, we focused our interest on the dorsal and lateral parts of the PAG. After injection of fluorogold and fluororuby, the most numerous connections occurred with the anterior cingulate gyrus, the anterior hypothalamic region, the ventromedial hypothalamic nucleus and the PAG itself. Our observations show that the sheep PAG belongs to the neuronal circuit of emotion and has specific parts as in other mammals. However, unlike other mammals, we observed very few connections between PAG and either the thalamic or the amygdalar nuclei. Interestingly, when comparing across species, the PAG connections of sheep were noticeably more like those previously described in other social species, rabbits and squirrel monkeys, than those in territorial species, rats or cats.
Assuntos
Comportamento Animal , Emoções , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Animais , Dextranos/administração & dosagem , Feminino , Corantes Fluorescentes/administração & dosagem , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso/administração & dosagem , Substância Cinzenta Periaquedutal/citologia , Rodaminas/administração & dosagem , Carneiro Doméstico , Comportamento Social , Especificidade da Espécie , Estilbamidinas/administração & dosagemRESUMO
Recent evidence indicates that reactivation of consolidated memories returns them to a protein-synthesis-dependent state called reconsolidation. The hypothesis that memories reconsolidate has never been assessed in social memory. The authors tested whether sheep (Ovis aries) mothers' memory of their lambs undergoes reconsolidation upon reactivation. After 7 days of mother-young contact, ewes were separated from their lambs for 8 hr, after which the lambs were reintroduced to their mothers for a 10-min reactivation session. Before reactivation, mothers received a subcutaneous injection of either the protein-synthesis inhibitor cycloheximide (CY, 1 mg/kg) or vehicle. Mothers' lamb memory was tested 1 hr (short-term memory [STM]) or 16 hr (long-term memory [LTM]) after reactivation. Mothers treated with CY exhibited intact STM but deficient LTM. CY injection without reactivation or before presentation of an alien lamb induced no deficit in LTM. CY-induced LTM deficit was alleviated by (a) introducing a reminder just before the LTM test, (b) extending mother-young contact, and (c) preventing suckling by the familiar lamb during reactivation. Thus, reconsolidation can be shown to exist in social memory, and some of its boundary conditions are discussed.
Assuntos
Comportamento Materno/fisiologia , Biossíntese de Proteínas , Reconhecimento Psicológico/fisiologia , Comportamento Social , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Cicloeximida/farmacologia , Feminino , Comportamento Materno/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Ovinos , Comportamento de Sucção/efeitos dos fármacosRESUMO
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
RESUMO
While behavioral mechanisms of bonding between young mammals and humans have been explored, brain structures involved in the establishment of such processes are still unknown. The aim of the study was to identify brain regions activated by the presence of the caregiver. Since human positive interaction plays an important role in the bonding process, activation of specific brain structures by stroking was also examined. Twenty-four female lambs reared in groups of three were fed and stroked daily by a female caregiver between birth and 5-7 weeks of age. At 4 weeks, an isolation-reunion-separation test and a choice test revealed that lambs developed a strong bond with their caregiver. At 5-7 weeks of age, lambs were socially isolated for 90min. They either remained isolated or met their caregiver who stroked them, or not, at regular intervals over a 90-min period. Neuronal activation was investigated at the end of the period for maximum c-Fos expression. Reunion with the caregiver appeased similarly the lambs whether stroking was provided or not. Stroking did not activate a specific brain network compared to no stroking. In both cases, brain regions associated with olfactory, visual and tactile cue processing were activated in the presence of the caregiver, suggesting a multisensory process involved. In addition, activation of the oxytocinergic system in the hypothalamic paraventricular nucleus induced by the presence of the caregiver suggests similar neuroendocrine mechanisms involved in inter-conspecific and animal-human bonding.
Assuntos
Vínculo Humano-Animal , Carneiro Doméstico/psicologia , Animais , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Mapeamento Encefálico/psicologia , Mapeamento Encefálico/veterinária , Cuidadores , Feminino , Humanos , Apego ao Objeto , Ocitocina/metabolismo , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , OvinosRESUMO
In birds there is compelling evidence that the development and expression of behavior is affected by maternal factors, particularly via variation in yolk hormone concentrations of maternal origin. In the present study we tested whether variation in yolk hormone levels lead to variation in the expression of neophobia in young domestic chicks. Understanding how the prenatal environment could predispose chicks to express fear-related behaviors is essential in order to propose preventive actions and improve animal welfare. We simulated the consequences of a maternal stress by experimentally enhancing yolk progesterone, testosterone and estradiol concentrations in hen eggs prior to incubation. The chicks from these hormone-treated eggs (H) and from sham embryos (C) that received the vehicle-only were exposed to novel food, novel object and novel environment tests. H chicks approached a novel object significantly faster and were significantly more active in a novel environment than controls, suggesting less fearfulness. Conversely, no effect of the treatment was found in food neophobia tests. Our study highlights a developmental influence of yolk hormones on a specific aspect of neophobia. The results suggest that increased yolk hormone levels modulate specifically the probability of exploring novel environments or novel objects in the environment.
RESUMO
Regulation of neuroendocrine responses is often studied in animals housed indoors in individual contiguous pens. In sheep, these housing conditions are used to control the environment, facilitate biological sampling and limit social stress. However, this type of housing also prevents exploratory behaviors and could induce stereotypies, non-compliant with welfare and possibly associated with a state of stress. In this context, we investigated the impact of housing in a single-pen, with other familiar conspecifics, on emotional state by evaluating behavioral, hormonal and neuronal measures in adult ewes. We hypothesized that emotional state would be more negative in animals housed in a single-pen for one week (Pen) than in freely moving animals (Free) but less negative than in socially isolated subjects (Isol). We tested our hypothesis in ovariectomized ewes to avoid the interaction with sexual steroid variations. Our behavioral, endocrine and neuronal (Fos activation of the corticotropin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus) measures confirmed that withdrawing familiar conspecifics was sufficient to induce strong stress responses in Isol ewes, but there was no indication that Pen ewes were stressed. However, the latter showed less mastication activity than Free ewes, probably due to limited accessibility to straw. The highest plasma prolactin levels were observed in Isol and Free animals, which might result from stress and physical activity, respectively. In Free ewes, plasma dopamine was low, consistent with its inhibitory control of prolactin. However, Isol animals had both high levels of prolactin and dopamine, suggesting a dysregulated balance in socially stressed ewes. As in other species, we suggest that the regulation of prolactin by dopamine varies with stress and/or social context. Overall, this study shows that the impact of housing conditions on different neuroendocrine systems should be considered more in the future.
Assuntos
Comportamento Animal/fisiologia , Sistema Endócrino/fisiopatologia , Meio Social , Isolamento Social/psicologia , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Animais , Feminino , Hormônios/metabolismo , Neurônios/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Ovinos , Estatísticas não Paramétricas , Estresse Psicológico/patologia , Vocalização Animal/fisiologiaRESUMO
In sheep, recognition of the familiar lamb by the mother depends on the learning of its olfactory signature after parturition. The authors quantified Fos changes in order to identify brain regions activated during lamb odor memory formation. Brain activation was compared with those measured in anosmic ewes displaying maternal behavior but not individual lamb recognition. In intact ewes, parturition induced significant increase in Fos expression in olfactory cortical regions and in cortical amygdala, whereas in anosmic mothers, Fos expression was very low. In contrast, no difference was observed between intact and anosmic ewes in hypothalamic areas and medial amygdala, suggesting a differentiation between the neural network controlling maternal responsiveness and that involved in olfactory lamb memory.