Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Nutr ; 61(2): 1109-1120, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34718859

RESUMO

INTRODUCTION: Fatty acid desaturase 1 (FADS1) gene encodes for delta-5 desaturase enzyme which is needed in conversion of linoleic acid (LA) to arachidonic acid (AA). Recent studies have shown that response to dietary PUFAs differs between the genotypes in circulating fatty acids. However, interactions between the FADS1 genotype and dietary LA on overall metabolism have not been studied. OBJECTIVES: We aimed to examine the interactions of FADS1 rs174550 genotypes (TT and CC) and high-LA diet to identify plasma metabolites that respond differentially to dietary LA according to the FADS1 genotype. METHODS: A total of 59 men (TT n = 26, CC n = 33) consumed a sunflower oil supplemented diet for 4 weeks. Daily dose of 30, 40, or 50 ml was calculated based on body mass index. It resulted in 17-28 g of LA on top of the usual daily intake. Fasting plasma samples at the beginning and at the end of the intervention were analyzed with LC-MS/MS non-targeted metabolomics method. RESULTS: At the baseline, the carriers of FADS1 rs174550-TT genotype had higher abundance of long-chain PUFA phospholipids compared to the FADS1 rs174550-CC one. In response to the high-LA diet, LA phospholipids and long-chain acylcarnitines increased and lysophospholipids decreased in fasting plasma similarly in both genotypes. LysoPE (20:4), LysoPC (20:4), and PC (16:0_20:4) decreased and cortisol increased in the carriers of rs174550-CC genotype; however, these genotype-diet interactions were not significant after correction for multiple testing. CONCLUSION: Our findings show that both FADS1 rs174550 genotype and high-LA diet modify plasma phospholipid composition. TRIAL REGISTRATION: The study was registered to ClinicalTrials: NCT02543216, September 7, 2015 (retrospectively registered).


Assuntos
Ácidos Graxos Dessaturases , Fosfolipídeos , Cromatografia Líquida , Dieta , Ácidos Graxos Dessaturases/genética , Genótipo , Humanos , Ácido Linoleico , Masculino , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem
2.
Atherosclerosis ; : 117562, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38714425

RESUMO

BACKGROUND AND AIMS: Lipoprotein(a) [Lp(a)] is a causal, genetically determined cardiovascular risk factor. Limited evidence suggests that dietary unsaturated fat may increase serum Lp(a) concentration by 10-15 %. Linoleic acid may increase Lp(a) concentration through its endogenous conversion to arachidonic acid, a process regulated by the fatty acid desaturase (FADS) gene cluster. We aimed to compare the Lp(a) and other lipoprotein trait-modulating effects of dietary alpha-linolenic (ALA) and linoleic acids (LA). Additionally, we examined whether FADS1 rs174550 genotype modifies Lp(a) responses. METHODS: A genotype-based randomized trial was performed in 118 men homozygous for FADS1 rs174550 SNP (TT or CC). After a 4-week run-in period, the participants were randomized to 8-week intervention diets enriched with either Camelina sativa oil (ALA diet) or sunflower oil (LA diet) 30-50 mL/day based on their BMI. Serum lipid profile was measured at baseline and at the end of the intervention. RESULTS: ALA diet lowered serum Lp(a) concentration by 7.3 % (p = 0.003) and LA diet by 9.5 % (p < 0.001) (p = 0.089 for between-diet difference). Both diets led to greater absolute decreases in individuals with higher baseline Lp(a) concentration (p < 0.001). Concentrations of LDL cholesterol (LDL-C), non-HDL-C, remnant-C, and apolipoprotein B were lowered more by the ALA diet (p < 0.01). Lipid or lipoprotein responses were not modified by the FADS1 rs174550 genotype. CONCLUSIONS: A considerable increase in either dietary ALA or LA from vegetable oils has a similar Lp(a)-lowering effect, whereas ALA may lower other major atherogenic lipids and lipoproteins to a greater extent than LA. Genetic differences in endogenous PUFA conversion may not influence serum Lp(a) concentration.

3.
Curr Opin Chem Biol ; 77: 102400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804582

RESUMO

Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.


Assuntos
Microbioma Gastrointestinal , Microbiota , Metabolômica/métodos , Dieta , Estado Nutricional
4.
Mol Nutr Food Res ; 66(24): e2200351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36367234

RESUMO

SCOPE: The fatty acid composition of plasma lipids, which is associated with biomarkers and risk of non-communicable diseases, is regulated by dietary polyunsaturated fatty acids (PUFAs) and variants of fatty acid desaturase (FADS). We investigated the interactions between dietary PUFAs and FADS1 rs174550 variant. METHODS AND RESULTS: Participants (n = 118), homozygous for FADS1 rs174550 variant (TT and CC) followed a high alpha-linolenic acid (ALA, 5 percent of energy (E-%)) or a high linoleic acid (LA, 10 E-%) diet during an 8-week randomized controlled intervention. Fatty acid composition of plasma lipids and PUFA-derived lipid mediators were quantified by gas and liquid chromatography mass spectrometry, respectively. The high-LA diet increased the concentration of plasma LA, but not its lipid mediators. The concentration of plasma arachidonic acid decreased in carriers of CC and remained unchanged in the TT genotype. The high-ALA diet increased the concentration of plasma ALA and its cytochrome P450-derived epoxides and dihydroxys, and cyclooxygenase-derived monohydroxys. Concentrations of plasma eicosapentaenoic acid and its mono- and dihydroxys increased only in TT genotype carriers. CONCLUSIONS: These findings suggest the potential for genotype-based recommendations for PUFA consumption, resulting in modulation of bioactive lipid mediators which can exert beneficial effects in maintaining health.


Assuntos
Polimorfismo de Nucleotídeo Único , Ácido alfa-Linolênico , Humanos , Dieta , Ácidos Graxos Dessaturases/genética , Ácidos Graxos , Ácidos Graxos Insaturados , Genótipo , Ácido Linoleico
5.
Mol Nutr Food Res ; 65(7): e2001004, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548080

RESUMO

SCOPE: The article investigates the FADS1 rs174550 genotype interaction with dietary intakes of high linoleic acid (LA) and high alpha-linolenic acid (ALA) on the response of fatty acid composition of plasma phospholipids (PLs), and of markers of low-grade inflammation and glucose-insulin homeostasis. METHODS AND RESULTS: One-hundred thirty homozygotes men for FADS1 rs174550 SNP (TT and CC genotypes) were randomized to an 8-week intervention with either LA- or ALA-enriched diet (13 E% PUFA). The source of LA and ALA are 30-50 mL of sunflower oil (SFO, 62-63% LA) and Camelina sativa oil (CSO, 30- are randomized to an 35% ALA), respectively. In the SFO arm, there is a significant genotype x diet interaction for the proportion of arachidonic acid in plasma phospholipids (p < 0.001), disposition index (DI30 ) (p = 0.039), and for serum high-sensitive c-reactive protein (hs-CRP, p = 0.029) after excluding the participants with hs-CRP concentration of >10 mg L-1 and users of statins or anti-inflammatory therapy. In the CSO arm, there are significant genotype x diet interactions for n-3 polyunsaturated fatty acids, but not for the clinical characteristics. CONCLUSIONS: The FADS1 genotype modifies the response to high PUFA diets, especially to high-LA diet. These findings suggest that approaches considering FADS variation may be useful in personalized dietary counseling.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácido Linoleico/farmacocinética , Ácido alfa-Linolênico/farmacocinética , Idoso , Glicemia/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Ômega-3/farmacocinética , Genótipo , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/sangue , Óleos de Plantas/química , Óleos de Plantas/farmacocinética , Polimorfismo de Nucleotídeo Único , Óleo de Girassol/química , Óleo de Girassol/farmacocinética
6.
Artigo em Inglês | MEDLINE | ID: mdl-32512364

RESUMO

n-3 and n-6 polyunsaturated fatty acids (PUFAs) and their lipid mediator metabolites are associated with inflammation. We investigated the effect of dietary intake of plant- and animal-derived n-3 PUFAs and fish protein on the circulatory concentrations of lipid mediators. Seventy-nine subjects with impaired fasting glucose who completed the controlled dietary intervention after randomization to the fatty fish (FF, n=20), lean fish (LF, n=21), Camelina sativa oil (CSO, n=18) or control group (n=20) for 12 weeks were studied. Lipid mediator profiling from fasting plasma samples before and after the intervention was performed by liquid chromatography-mass spectrometry (LC-MS/MS). The FF diet increased concentrations of 18-hydroxyeicosapentaenoic acid (18-HEPE) and 4- and 17-hydroxydocosahexaenoic acid (4-, 17-HDoHE) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. Concentrations of lipid mediators derived from α-linolenic acid (ALA) increased and arachidonic acid (AA) derived 5-iso prostaglandin F2α-VI decreased in the CSO group. There were no significant changes in lipid mediators in the LF group. The dietary intake of both plant and animal-based n-3 PUFAs increased circulatory concentrations of lipid mediators with potential anti-inflammatory properties.


Assuntos
Brassicaceae , Proteínas de Peixes da Dieta/administração & dosagem , Transtornos do Metabolismo de Glucose/sangue , Transtornos do Metabolismo de Glucose/dietoterapia , Lipídeos/sangue , Óleos de Plantas/administração & dosagem , Feminino , Óleos de Peixe , Humanos , Masculino , Pessoa de Meia-Idade
7.
Metabolites ; 10(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244411

RESUMO

Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography-mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA