Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769007

RESUMO

Even in the absence of specific sensory input or a behavioral task, the brain produces structured patterns of activity. This organized activity is modulated by changes in arousal. Here, we use wide-field voltage imaging to establish how arousal relates to cortical network voltage and hemodynamic activity in spontaneously behaving head-fixed male and female mice expressing the voltage-sensitive fluorescent FRET sensor Butterfly 1.2. We find that global voltage and hemodynamic signals are both positively correlated with changes in arousal with a maximum correlation of 0.5 and 0.25, respectively, at a time lag of 0 s. We next show that arousal influences distinct cortical regions for both voltage and hemodynamic signals. These include a broad positive correlation across most sensory-motor cortices extending posteriorly to the primary visual cortex observed in both signals. In contrast, activity in the prefrontal cortex is positively correlated to changes in arousal for the voltage signal while it is a slight net negative correlation observed in the hemodynamic signal. Additionally, we show that coherence between voltage and hemodynamic signals relative to arousal is strongest for slow frequencies below 0.15 Hz and is near zero for frequencies >1 Hz. We finally show that coupling patterns are dependent on the behavioral state of the animal with correlations being driven by periods of increased orofacial movement. Our results indicate that while hemodynamic signals show strong relations to behavior and arousal, these relations are distinct from those observed by voltage activity.


Assuntos
Nível de Alerta , Hemodinâmica , Rede Nervosa , Animais , Nível de Alerta/fisiologia , Camundongos , Masculino , Feminino , Hemodinâmica/fisiologia , Rede Nervosa/fisiologia , Córtex Cerebral/fisiologia , Camundongos Endogâmicos C57BL
2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746246

RESUMO

A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention. To determine whether QPPs exhibit variations across brain conditions, the relative magnitude and distribution of the three strongest QPPs were examined in two scenarios. First, in data from the Human Connectome Project, the relative incidence and magnitude of the QPPs was examined over the course of the scan, under the hypothesis that increasing drowsiness would shift the expression of the QPPs over time. Second, using rs-fMRI in rats obtained with a novel approach that minimizes noise, the relative incidence and magnitude of the QPPs was examined under three different anesthetic conditions expected to create distinct types of brain activity. The results indicate that both the distribution of QPPs and their magnitude changes with brain state, evidence of the sensitivity of these large-scale patterns to widespread changes linked to alterations in brain conditions.

3.
Neurophotonics ; 9(3): 032209, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35434180

RESUMO

The brain exists in a state of constant activity in the absence of any external sensory input. The spatiotemporal patterns of this spontaneous brain activity have been studied using various recording and imaging techniques. This has enabled considerable progress to be made in elucidating the cellular and network mechanisms that are involved in the observed spatiotemporal dynamics. This mini-review outlines different spatiotemporal dynamic patterns that have been identified in four commonly used modalities: electrophysiological recordings, optical imaging, functional magnetic resonance imaging, and electroencephalography. Signal sources for each modality, possible sources of the observed dynamics, and future directions are also discussed.

4.
Front Neurosci ; 16: 816331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350561

RESUMO

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.

5.
Curr Biol ; 31(18): 4172-4179.e6, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314675

RESUMO

A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1-4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems.


Assuntos
Córtex Visual , Vias Visuais , Animais , Furões , Corpos Geniculados/fisiologia , Camundongos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA