Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 9(3)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175731

RESUMO

Dissemination within the peritoneal cavity is a main determinant of poor patient outcomes from high-grade serous carcinomas (HGSCs). The dissemination process is poorly understood from a cancer evolutionary perspective. We reconstructed the evolutionary trajectories across a median of 5 tumor sites and regions from each of 23 patients based on deep whole-exome sequencing. Polyclonal cancer origin was detected in 1 patient. Ovarian tumors had more complex subclonal architectures than other intraperitoneal tumors in each patient, which indicated that tumors developed earlier in the ovaries. Three common modes of dissemination were identified, including monoclonal or polyclonal dissemination of monophyletic (linear) or polyphyletic (branched) subclones. Mutation profiles of initial or disseminated clones varied greatly among cancers, but recurrent mutations were found in 7 cancer-critical genes, including TP53, BRCA1, BRCA2, and DNMT3A, and in the PI3K/AKT1 pathway. Disseminated clones developed late in the evolutionary trajectory models of most cancers, in particular in cancers with DNA damage repair deficiency. Polyclonal dissemination was predicted to occur predominantly as a single and rapid wave, but chemotherapy exposure was associated with higher genomic diversity of disseminated clones. In conclusion, we described three common evolutionary dissemination modes across HGSCs and proposed factors associated with dissemination diversity.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
2.
Nat Commun ; 15(1): 2810, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561347

RESUMO

Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA