Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 110(2): 325-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181968

RESUMO

Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.


Assuntos
Cucumis sativus , Cucumis sativus/metabolismo , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Ácidos Indolacéticos/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo
2.
J Integr Plant Biol ; 65(12): 2552-2568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37811725

RESUMO

Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Temperatura , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Temperatura Baixa
3.
Angew Chem Int Ed Engl ; 62(28): e202301556, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36920655

RESUMO

Different from classical allylic substitutions that require a vicinal leaving group, an olefin bearing a remote leaving group is scarcely viewed as a potential allylation substrate. Herein, we describe feasible protocols to achieve regiodivergent allylic C-H functionalizations via palladium-catalyzed remote substitution, which provides a novel strategy for the seldomly studied migratory Tsuji-Trost reaction. Dictated by a suitable ligand, a process that involved 4,3-hydrofunctionalization of the generated conjugated diene intermediate via metal walking is observed in generally >20 : 1 regioselectivity. Unexpectedly, a related 1,4-hydrofunctionalization pathway is found to be a major route with a newly synthesized electron-rich bisphosphine ligand, which challenges the conventional viewpoint on the potential regioselectivity of hydrofunctionalizations of linear internal conjugated dienes via η3 -substitution. A series of deuterium experiments and kinetic studies provide a preliminary insight into the potential catalytic cycle.

4.
Theor Appl Genet ; 135(9): 3117-3125, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35869997

RESUMO

KEY MESSAGE: Two candidate genes (Csa6G046210 and Csa6G046240) were identified by fine-mapping gsb-s6.2 for gummy stem blight resistance in cucumber stem. Gummy stem blight (GSB) is a serious fungal disease caused by Didymella bryoniae, that affects cucumber yield and quality worldwide. However, no GSB-resistant genes have been identified in cucumber cultivars. In this study, the wild cucumber accession 'PI 183967' was used as a source of resistance to GSB in adult stems. An F2 population was mapped using resistant line 'LM189' and susceptible line 'LM6' derived from a cross between 'PI 183967' and '931'. By developing InDel and SNP markers, the gsb-s6.2 QTL on Chr. 6 was fine-mapped to a 34 kb interval harboring six genes. Gene Expression analysis after inoculation showed that two candidate genes (Csa6G046210 and Csa6G046240) were induced and differentially expressed between the resistant and susceptible parents, and may be involved in disease defense. Sequence alignment showed that Csa6G046210 encodes a multiple myeloma tumor-associated protein, and it harbored two nonsynonymous SNPs and one InDel in the third and the fourth exons, and two InDels in the TATA-box of the basal promoter region. Csa6G046240 encodes a MYB transcription factor with six variants in the AP2/ERF and MYB motifs in the promoter. These two candidate genes lay the foundation for revealing the mechanism of GSB resistance and may be useful for marker-assisted selection in cucumber disease-resistant breeding.


Assuntos
Cucumis sativus , Cucumis sativus/microbiologia , Resistência à Doença/genética , Estudos de Associação Genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética
5.
Theor Appl Genet ; 135(8): 2593-2607, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35764690

RESUMO

KEY MESSAGE: The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.


Assuntos
Cucumis sativus , Germinação , Ácido Abscísico/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Giberelinas/metabolismo , Sementes/metabolismo , Temperatura
6.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897836

RESUMO

Salt stress seriously restricts plant growth and development, affects yield and quality, and thus becomes an urgent problem to be solved in cucumber stress resistance breeding. Mining salt tolerance genes and exploring the molecular mechanism of salt tolerance could accelerate the breeding of cucumber germplasm with excellent salt stress tolerance. In this study, 220 cucumber core accessions were used for Genome-Wide Association Studies (GWAS) and the identification of salt tolerance genes. The salinity injury index that was collected in two years showed significant differences among the core germplasm. A total of seven loci that were associated with salt tolerance in cucumber seedlings were repeatedly detected, which were located on Chr.2 (gST2.1), Chr.3 (gST3.1 and gST3.2), Chr.4 (gST4.1 and gST4.2), Chr.5 (gST5.1), and Chr.6 (gST6.1). Within these loci, 62 genes were analyzed, and 5 candidate genes (CsaV3_2G035120, CsaV3_3G023710, CsaV3_4G033150, CsaV3_5G023530, and CsaV3_6G009810) were predicted via the functional annotation of Arabidopsis homologous genes, haplotype of extreme salt-tolerant accessions, and qRT-PCR. These results provide a guide for further research on salt tolerance genes and molecular mechanisms of cucumber seedlings.


Assuntos
Cucumis sativus , Tolerância ao Sal , Cucumis sativus/genética , Estudo de Associação Genômica Ampla , Genômica , Melhoramento Vegetal , Tolerância ao Sal/genética , Plântula/genética
7.
Theor Appl Genet ; 134(11): 3535-3552, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34181057

RESUMO

KEY MESSAGE: Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.


Assuntos
Cucumis sativus/genética , Frutas , Melhoramento Vegetal , Locos de Características Quantitativas , Cor , Tricomas
8.
Angew Chem Int Ed Engl ; 59(49): 22109-22116, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748542

RESUMO

The capability to significantly shorten the synthetic period of a broad spectrum of open organic materials presents an enticing prospect for materials processing and applications. Herein we discovered 1,2,4-triazolium poly(ionic liquid)s (PILs) could serve as a universal additive to accelerate by at least one order of magnitude the growth rate of representative imine-linked crystalline open organics, including organic cages, covalent organic frameworks (COFs), and macrocycles. This phenomenon results from the active C5-protons in poly(1,2,4-triazolium)s that catalyze the formation of imine bonds, and the simultaneous salting-out effect (induced precipitation by decreasing solubility) that PILs exert on these crystallizing species.

9.
Biochem Biophys Res Commun ; 512(4): 779-785, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30928098

RESUMO

3-oxoacid CoA-transferase 1 (OXCT1) is a key enzyme in ketone body metabolism that is expressed in adipose and other tissues. The present study addressed the function of OXCT1 in adipose tissue from Tan sheep. The 1563 bp ovine OXCT1 coding sequence was cloned from ovine adipose tissue. The OXCT1 protein sequence was highly homologous to OXCT1 from other species. OXCT1 was highly expressed in kidney and at lower levels in small intestine, lung, spleen, heart, stomach, liver, tail adipose, and cartilage, but not in longissimus muscle. OXCT1 was expressed at higher levels in perirenal and tail adipose tissues than in subcutaneous adipose tissue. OXCT1 expression levels increased during the in vitro differentiation of adipocytes, but decreased dramatically at day 8. OXCT1 knockdown in ovine adipocytes promoted lipid accumulation, whereas overexpression did the converse. This study demonstrates that OXCT1 may play a role in adipogenesis and provides new insight on adipose deposition in sheep.


Assuntos
Adipócitos/citologia , Tecido Adiposo/fisiologia , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Clonagem Molecular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Marcadores Genéticos , Ovinos , Gordura Subcutânea/citologia , Gordura Subcutânea/fisiologia
10.
BMC Plant Biol ; 19(1): 243, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174472

RESUMO

BACKGROUND: Green flesh color, resulting from the accumulation of chlorophyll, is one of the most important commercial traits for the fruits. The genetic network regulating green flesh formation has been studied in tomato, melon and watermelon. However, little is known about the inheritance and molecular basis of green flesh in cucumber. This study sought to determine the main genomic regions associated with green flesh. Three F2 and two BC1 populations derived from the 9110Gt (cultivated cucumber, green flesh color) and PI183967 (wild cucumber, white flesh color) were used for the green flesh genetic analysis. Two F2 populations of them were further employed to do the map construction and quantitative trait loci (QTL) study. Also, a core cucumber germplasms population was used to do the GWAS analysis. RESULTS: We identified three indexes, flesh color (FC), flesh extract color (FEC) and flesh chlorophyll content (FCC) in three environments. Genetic analysis indicated that green flesh color in 9110Gt is controlled by a major-effect QTL. We developed two genetic maps with 192 and 174 microsatellite markers respectively. Two novel inversions in Chr1 were identified between cultivated and wild cucumbers. The major-effect QTL, qgf5.1, was identified using FC, FEC and FCC index in all different environments used. In addition, the same qgf5.1, together with qgf3.1, was identified via GWAS. Further investigation of two candidate regions using pairwise LD correlations, combined with genetic diversity of qgf5.1 in natural populations, it was found that Csa5G021320 is the candidate gene of qgf5.1. Geographical distribution revealed that green flesh color formation could be due to the high latitude, which has longer day time to produce the photosynthesis and chlorophyll synthesis during cucumber domestication and evolution. CONCLUSIONS: We first reported the cucumber green flesh color is a quantitative trait. We detected two novel loci qgf5.1 and qgf3.1, which regulate the green flesh formation in cucumber. The QTL mapping and GWAS approaches identified several candidate genes for further validation using functional genomics or forward genetics approaches. Findings from the present study provide a new insight into the genetic control of green flesh in cucumber.


Assuntos
Cucumis sativus/fisiologia , Estudo de Associação Genômica Ampla , Fenótipo , Pigmentação/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cor , Cucumis sativus/genética , Redes Reguladoras de Genes/fisiologia
11.
Theor Appl Genet ; 132(1): 27-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30242492

RESUMO

KEY MESSAGE: Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.


Assuntos
Cucumis sativus/genética , Frutas/fisiologia , Locos de Características Quantitativas , China , Mapeamento Cromossômico , Domesticação , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Variação Genética , Fenótipo , Filogenia
12.
Chemistry ; 24(22): 5754-5759, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29508930

RESUMO

Imidazolium-based ionic liquids have the ability to undergo a variety of chemical reactions through an N-heterocyclic carbene (NHC) intermediate, which has expanded the chemical toolbox for new applications. Despite their uses and exploration, the carbene-forming properties and applications of their polymeric congeners, poly(ionic liquid)s (PILs), is still underdeveloped. Herein, we explore the NHC-forming properties of a theophylline-derived PIL for nanogel synthesis. Using silver oxide as both the carbene-forming reagent and cross-linker, nanogels containing individually stabilized ions can be created with different sizes and morphology, including large "galaxy-like" superstructures. Using high-resolution TEM techniques, we directly observed the sub-nanometer structure of these constructs. These features combined exemplify the unique chemistry of poly-NHCs for single-metal-ion-stabilization nanogel design.

13.
Theor Appl Genet ; 131(12): 2663-2675, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30244395

RESUMO

KEY MESSAGE: Candidate genes associated with in vitro regeneration were identified in cucumber. The ability to regenerate shoots or whole plants from differentiated plant tissues is essential for plant transformation. In cucumber (Cucumis sativus L.), regeneration ability varies considerably across accessions, but the genetic mechanism has not yet been demonstrated. In the present study, 148 recombinant inbred lines and a core collection were examined to identify candidate genes involved in cucumber regeneration. Four QTL for cotyledon regeneration that explained 9.7-16.6% of the phenotypic variation in regeneration were identified on cucumber chromosomes 1, 3, and 6. The loci Fcrms1.1 and Fcrms+1.1 were consistently detected in the same genetic interval on two regeneration media. A genome-wide association study revealed 18 SNPs (- log(p) > 5) significantly associated with cotyledon regeneration. Three candidate genes in this region were identified. RT-PCR analyses revealed that Csa1G642540 was significantly more highly expressed in genotypes with high cotyledon regeneration rates than in those with low regeneration. The Csa1G642540 CDS driven by its native promoter was transformed into cucumber line 9110Gt; molecular analyses showed that the T-DNA had integrated into the genomes of 8.6% of regenerated plantlets. The seeds from T0 plants expressing Csa1G642540 were tested for regeneration from cotyledon explants, and the segregate ratio in regeneration frequency is 3:1. The AT3G44110.1, the homologue gene of Csa1G642540 in Arabidopsis, has been reported as PM H+-ATPase activity regulation, integrating flowering signals and enlarging meristem function. These results demonstrate that Csa1G642540 might play an important role in regeneration in cucumber and could serve as a selectable marker for regeneration from cotyledons.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Genes de Plantas , Regeneração/genética , Cotilédone/crescimento & desenvolvimento , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Theor Appl Genet ; 131(6): 1239-1252, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29492617

RESUMO

KEY MESSAGE: Map-based cloning was used to identify the ns gene, which was involved in the formation of cucumber numerous fruit spines together with other genes under regulation by plant hormone signal transduction. The cucumber (Cucumis sativus) fruit spine density has an important impact on the commercial value. However, little is known about the regulatory mechanism for the fruit spine formation. Here, we identified NUMEROUS SPINES (NS), which regulate fruit spine development by modulating the Auxin signaling pathway. We fine-mapped the ns using a 2513 F2 population derived from NCG122 (numerous fruit spines line) and NCG121 (few fruit spines line), and showed that NS encoded auxin transporter-like protein 3. Genetic diversity analysis of the NS gene in natural populations revealed that one SNP and one InDel in the coding region of ns are co-segregated with the fruit spine density. The NS protein sequence was highly conserved among plants, but its regulation of fruit spine development in cucumber seems to be a novel function. Transcriptome profiling indicated that the plant hormone signal transduction-related genes were highly enriched in the up-regulated genes in NCG122 versus NCG121. Moreover, expression pattern analysis of the auxin signal pathway-related genes in NCG122 versus NCG121 showed that upstream genes of the pathway (like ns candidate gene Csa2M264590) are down-regulated, while the downstream genes are up-regulated. Quantitative reverse transcription PCR confirmed the differential expression during the fruit spine development. Therefore, reduced expression of ns may promote the fruit spine formation. Our findings provide a valuable framework for dissecting the regulatory mechanism for the fruit spine development.


Assuntos
Cucumis sativus/genética , Perfilação da Expressão Gênica , Genes de Plantas , Ácidos Indolacéticos , Tricomas/crescimento & desenvolvimento , Mapeamento Cromossômico , Clonagem Molecular , Frutas/genética , Regulação da Expressão Gênica de Plantas , Mutação INDEL , Polimorfismo de Nucleotídeo Único
15.
J Org Chem ; 83(2): 684-689, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257693

RESUMO

Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

16.
Plant Physiol ; 172(1): 603-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457123

RESUMO

Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement.


Assuntos
Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Compostos Orgânicos Voláteis/análise , Sequência de Aminoácidos , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Estrutura Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
17.
Plant Dis ; 101(7): 1145-1152, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30682960

RESUMO

Gummy stem blight (GSB), caused by Didymella bryoniae (syn. Stagonosporopsis cucurbitacearum), is an important disease of cucumber (Cucumis sativus L.) worldwide. To better understand the resistance to GSB in cucumber seedlings, a set of 160 F9 recombinant inbred lines (RILs) and a total of 405 pairs of SSR primers were employed to detect quantitative trait loci (QTLs) conferring the resistance. Genetic analysis indicated that the resistance to GSB in PI 183967 seedlings was quantitative and mainly governed by two pairs of major QTLs and multiple minor QTLs. Six QTLs, gsb3.1, gsb3.2, gsb3.3, gsb4.1, gsb5.1, and gsb6.1, for resistance to GSB in cucumber seedlings were detected. The stable locus gsb5.1 on Chr.5 was repeatedly detected in three seasons. Locus gsb5.1 accounted for the highest phenotypic variation, 17.9%, and was flanked by SSR15321 and SSR07711 within the genetic distance of 0.5 cM. There were 102 candidate genes predicted in the region harboring the stable QTL gsb5.1, of which seven genes were related to disease resistance. These results can provide a good base for further study and molecular markers for fine-mapping the major QTL conferring GSB resistance in cucumber.

18.
Mol Carcinog ; 55(5): 778-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25945460

RESUMO

LW-213 is a derivative of Wogonin and the anticancer activities of Wogonin have been reported. To study whether LW-213 inhibits cancer cells and explore a possible mechanism, we investigate the compound in several cancer cell lines. We found LW-213 arrests G2/M cycle in breast cancer cells by suppression of Akt/Gsk3ß/ß-catenin signaling pathway. In compound treated cells, cell cycle-related proteins cyclin A, cyclin B1, p-CDK1, p-Cdc25C, and p-Chk2 (Thr68) were upregulated, and ß-catenin nuclear translocation was inhibited. Electrophoretic mobility shift assay revealed LW-213 inhibits binding of ß-catenin/LEF complex to DNA. GSK3ß inhibitor LiCl and siRNA against GSK3ß partially reversed G2/M arrest in breast cancer MCF-7 cells. These results suggest LW-213 triggered G2/M cell cycle arrest through suppression of ß-catenin signaling. In BALB/c mice, growth of xenotransplanted MCF-7 tumor was also inhibited after treatment of LW-213. Regulation of cyclin A, cyclin B1, and ß-catenin by LW-213 in vivo was the same as in vitro study. In conclusion, we found LW-213 exerts its anticancer effect on cell proliferation and cell cycle through repression of Akt/Gsk3ß/ß-catenin signaling pathway. LW-213 could be a potential candidate for anticancer drug development.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Flavanonas/administração & dosagem , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Flavanonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Cloreto de Lítio/farmacologia , Células MCF-7 , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo
19.
Soft Matter ; 12(20): 4590-4, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27101798

RESUMO

Nanofibers are well-known nanomaterials that are promising for many important applications. Since sample preparation for the applications usually starts from a nanofiber solution, characterization of the original conformation of nanofibers in the solution is significant because the conformation affects remarkably the behavior of nanofibers in the samples. However, the characterization is very difficult by existing methods: light scattering can only roughly evaluate the conformation in solution; cryo-TEM is laborious, time-consuming, and challenging technically, and thus difficult to study a system statistically. Herein we report a novel and reliable method to recover the 3D original image of nanofibers in solution through theoretical analysis and Monte-Carlo simulations of TEM images of the nanofibers. Firstly, six kinds of monodisperse nanofibers with the same composition and inner structure but different contour lengths were prepared by the method developed in our laboratory. Then, each kind of nanofiber deposited on the substrate of the TEM sample was measured by TEM and meanwhile simulated by the Monte Carlo method. By matching the simulation results with the TEM results, we determined information about the nanofibers including their rigidity and the interaction between the nanofibers and the substrate. Furthermore, for each kind of nanofiber, based on the information, 3D images of the nanofibers in solution can be re-constructed, and then the average gyration radius and hydrodynamic radius can be calculated, which were compared with the corresponding values measured experimentally to demonstrate the reliability of this method.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Método de Monte Carlo , Nanofibras/química , Polímeros/química , Modelos Moleculares , Conformação Molecular
20.
Soft Matter ; 12(22): 4891-5, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27192018

RESUMO

Herein, we report a facile but highly controllable method to induce core-core fusion for not only spherical but also worm-like polymeric micelles, leading to various complex but regular superstructures including "random worm-like co-micelles", "block worm-like co-micelles" and octopus-like superparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA