RESUMO
Septic cardiomyopathy is a secondary myocardial injury caused by sepsis. N6-methyl-adenosine (m6A) modification is involved in the pathological progression of septic cardiomyopathy; however, the pathological mechanism remains unclear. In this study, we identified the overall m6A modification pattern in septic myocardial injury and determined its potential interactions with differentially expressed genes (DEGs). A sepsis mouse model exhibiting septic symptoms and myocardial tissue damage was induced by lipopolysaccharide (LPS). LPS-induced septic myocardial tissues and control myocardial tissues were subjected to methylated RNA immunoprecipitation sequencing and RNA sequencing to screen for differentially expressed m6A peaks and DEGs. We identified 859 significantly m6A-modified genes in septic myocardial tissues, including 432 upregulated and 427 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to explore the biological importance of differentially expressed m6A methylated genes and DEGs. Differentially expressed m6A methylated genes were enriched in immune- and inflammation-related pathways. Conjoint analysis revealed co-expression of differentially expressed m6A genes and DEGs, including genes that were upregulated or downregulated and those showing opposite trends. High expression of m6A-related genes (WTAP and IGF2BP2), interleukin-17, and interleukin-17 pathway-related genes (MAPK11 and TRAF3IP2) was verified using reverse transcription-quantitative PCR. We confirmed the presence of m6A modification of the transcriptome and m6A-mediated gene expression in septic myocardial tissues.
Assuntos
Adenosina , Miocárdio , Sepse , Animais , Camundongos , Sepse/genética , Sepse/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Metilação , Adenosina/metabolismo , Adenosina/análogos & derivados , Masculino , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , LipopolissacarídeosRESUMO
AIM: Lambl's excrescences are mobile, thin, fibrinous connective tissue strands typically found on left-sided cardiac values. Migraine is positively associated with structural cardiac anomalies. However, it remains unclear whether Lambl's excrescences are associated with migraine. METHODS: Retrospective review of 182 inpatients with Lambl's excrescences confirmed by transesophageal echocardiogram in Chinese PLA General Hospital since January 2010. Among them, those with isolated Lambl's excrescences presented with migraine-like headache were included. We collected information on the demographics and clinical profiles of all participants, and performed follow-up visits. RESULTS: A total of 8 patients presented with migraine-like headache among 15 patients with isolated Lambl's excrescences. They included 2 men and 6 women, with an average age of 44.63 ± 12.24 years. Among these patients, 3 had visual aura, and 6 manifested infarct-like lesions on magnetic resonance imaging, of which 2 developed lesions after first visit. During follow-up, 4 patients suffering from intervention for Lambl's excrescences dramatically reduced headache recurrence compared to the other 4 patients only receiving migraine preventive medications. CONCLUSIONS: This study supports the hypothesis that microemboli from isolated Lambl's excrescences could cause migraine-like headache. And intervention for Lambl's excrescences may be crucial for preventing headache recurrence.
This study supports the hypothesis that microemboli from isolated Lambl's excrescences could cause migraine-like headache.The small sample size study fails to make management recommendations.
RESUMO
BACKGROUND: Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD: To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS: Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION: The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.
Assuntos
Dor Aguda , Neurônios Adrenérgicos , Transtornos de Enxaqueca , Transtornos do Sono-Vigília , Humanos , Locus Cerúleo , Transtornos do Sono-Vigília/complicações , Cefaleia , Privação do Sono , Sono , NitroglicerinaRESUMO
BACKGROUND: Transient global amnesia is common in the older adult, but the cause and mechanism remain unclear. Focal brain lesions allow for causal links between the lesion location and resulting symptoms, and we based on the reported TGA-causing lesions and used lesion network mapping to explore the causal neuroanatomical substrate of TGA. METHODS: Fifty-one cases of transient global amnesias with DWI lesions from the literature were identified, and clinical data were extracted and analyzed. Next, we mapped each lesion volume onto a reference brain and computed the network of regions functionally connected to each lesion location using a large normative connectome dataset. RESULTS: Lesions primarily occurred in the hippocampus, and in addition to the hippocampus, there are also other locations of TGA-causing lesions such as the cingulate gyrus, anterior thalamic nucleus (ATN), putamen, caudate nucleus, corpus callosum, fornix. More than 90% of TGA-causing lesions inside the hippocampus were functionally connected with the default mode network (DMN). CONCLUSION: Structural abnormality in the hippocampus was the most consistently reported in TGA, and besides the hippocampus, lesions occurring at several other brain locations also could cause TGA. The DMN may also be involved in the pathophysiology of TGA. According to the clinical and neuroimaging characteristics, TGA may be a syndrome with multiple causes and cannot be treated simply as a subtype of TIA.
Assuntos
Amnésia Global Transitória , Conectoma , Humanos , Idoso , Amnésia Global Transitória/diagnóstico por imagem , Amnésia Global Transitória/etiologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Hipocampo/patologia , Amnésia/complicaçõesRESUMO
BACKGROUND: Phenotypic age acceleration, which reflects the difference between phenotypic age and chronological age, is an assessment to measure accelerated aging. Klotho is a protein related to slower aging, but its association with accelerated aging remains unclear. METHODS: Based on data from the 2007-2010 National Health and Nutrition Examination Survey, phenotypic age was calculated using chronological age and 9 aging-related biomarkers. A total of 4388 participants aged 40 to 79 years with measured serum Klotho and calculated phenotypic age were enrolled. The association between serum Klotho and phenotypic age acceleration was estimated using multivariable linear regression models. The possible nonlinear relationship was examined with smooth curve fitting. We also conducted a segmented regression model to examine the threshold effect. RESULTS: The association between serum Klotho and phenotypic age acceleration followed a U-shaped curve (p for nonlinearity < 0.001), with the inflection point at 870.7 pg/ml. The phenotypic age acceleration significantly decreased with the increment of serum Klotho (per SD increment: ß -1.77; 95% CI, -2.57 ~ -0.98) in participants with serum Klotho < 870.7 pg/ml, and increased with the increment of serum Klotho (per SD increment:ß, 1.03; 95% CI: 0.53 ~ 1.54) in participants with serum Klotho ≥ 870.7 pg/ml. CONCLUSION: There was a U-shaped association between serum Klotho and accelerated aging among the middle-aged and elderly US population.
Assuntos
Envelhecimento , Glucuronidase , Idoso , Humanos , Pessoa de Meia-Idade , Biomarcadores , Estudos Transversais , Inquéritos NutricionaisRESUMO
Clinical imaging studies have revealed that the hypothalamus is activated in migraine patients prior to the onset of and during headache and have also shown that the hypothalamus has increased functional connectivity with the spinal trigeminal nucleus. The dopaminergic system of the hypothalamus plays an important role, and the dopamine-rich A11 nucleus may play an important role in migraine pathogenesis. We used intraperitoneal injections of glyceryl trinitrate to establish a model of acute migraine attack and chronicity in mice, which was verified by photophobia experiments and von Frey experiments. We explored the A11 nucleus and its downstream pathway using immunohistochemical staining and neuronal tracing techniques. During acute migraine attack and chronification, c-fos expression in GABAergic neurons in the A11 nucleus was significantly increased, and inhibition of DA neurons was achieved by binding to GABA A-type receptors on the surface of dopaminergic neurons in the A11 nucleus. However, the expression of tyrosine hydroxylase and glutamic acid decarboxylase proteins in the A11 nucleus of the hypothalamus did not change significantly. Specific destruction of dopaminergic neurons in the A11 nucleus of mice resulted in severe nociceptive sensitization and photophobic behavior. The expression levels of the D1 dopamine receptor and D2 dopamine receptor in the caudal part of the spinal trigeminal nucleus candalis of the chronic migraine model were increased. Skin nociceptive sensitization of mice was slowed by activation of the D2 dopamine receptor in SP5C, and activation of the D1 dopamine receptor reversed this behavioral change. GABAergic neurons in the A11 nucleus were activated and exerted postsynaptic inhibitory effects, which led to a decrease in the amount of DA secreted by the A11 nucleus in the spinal trigeminal nucleus candalis. The reduced DA bound preferentially to the D2 dopamine receptor, thus exerting a defensive effect against headache.
Assuntos
Dopamina , Transtornos de Enxaqueca , Camundongos , Humanos , Animais , Dopamina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Hipotálamo/metabolismo , Receptores de Dopamina D1/metabolismo , Transtornos de Enxaqueca/metabolismo , Neurônios Dopaminérgicos/metabolismo , Cefaleia/metabolismoRESUMO
BACKGROUND: Migraine, a complex brain disorder, is regarded as a possible clinical manifestation of brain energy dysfunction. The trigeminovascular system is considered the basis for the pathogenesis of migraine, hence we depicted the proteomics profiling of key regions in this system, then focusing on protein alterations related to mitochondrial function. The aim of this study is to illustrate the role of mitochondria in migraine. METHODS: A mouse model of chronic migraine (CM) was established by repeated nitroglycerin (NTG) stimulation and evaluated by von-Frey filaments, a hot plate and a light-dark box. Differentially expressed proteins (DEPs) in some subcortical brain regions of the trigeminovascular system were screened through liquid chromatography-tandem mass spectrometry (LCâMS/MS) to analyse the specificity of key signaling pathways in different brain regions. And then mitochondrial function, structure and dynamics were determined by qPCR, ELISA, and transmission electron microscope (TEM). Finally, the effect of mitochondrial intervention-Urolithin A (UA) on CM was investigated. RESULTS: Repeated NTG injection triggered photophobia, periorbital and hind paw allodynia in mice. The proteomics profiling of CM model showed that 529, 109, 163, 152 and 419 DEPs were identified in the thalamus, hypothalamus, periaqueductal grey (PAG), trigeminal ganglion (TG) and trigeminocervical complex (TCC), respectively. The most significant changes in the brain region-specific pathways pointed to thalamic mitochondrial impairment. NTG induced mitochondrial structural disruption, dysfunction and homeostatic dysregulation, which could be partially attenuated by UA intervention. CONCLUSION: Our findings highlight the involvement of mitochondrial damage in the thalamus in central sensitization of CM, which provides evidence of possible metabolic mechanisms in migraine pathophysiology.
Assuntos
Transtornos de Enxaqueca , Proteômica , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tálamo , Modelos Animais de Doenças , Nitroglicerina/toxicidadeRESUMO
BACKGROUND: Migraine is a highly disabling health burden with multiple symptoms; however, it remains undertreated because of an inadequate understanding of its neural mechanisms. Neuropeptide Y (NPY) has been demonstrated to be involved in the modulation of pain and emotion, and may play a role in migraine pathophysiology. Changes in NPY levels have been found in patients with migraine, but whether and how these changes contribute to migraine is unknown. Therefore, the purpose of this study was to investigate the role of NPY in migraine-like phenotypes. METHODS: Here, we used intraperitoneal injection of glyceryl trinitrate (GTN, 10 mg/kg) as a migraine mouse model, which was verified by light-aversive test, von Frey test, and elevated plus maze test. We then performed whole-brain imaging with NPY-GFP mice to explore the critical regions where NPY was changed by GTN treatment. Next, we microinjected NPY into the medial habenula (MHb), and further infused Y1 or Y2 receptor agonists into the MHb, respectively, to detect the effects of NPY in GTN-induced migraine-like behaviors. RESULTS: GTN effectively triggered allodynia, photophobia, and anxiety-like behaviors in mice. After that, we found a decreased level of GFP+ cells in the MHb of GTN-treated mice. Microinjection of NPY attenuated GTN-induced allodynia and anxiety without affecting photophobia. Furthermore, we found that activation of Y1-but not Y2-receptors attenuated GTN-induced allodynia and anxiety. CONCLUSIONS: Taken together, our data support that the NPY signaling in the MHb produces analgesic and anxiolytic effects through the Y1 receptor. These findings may provide new insights into novel therapeutic targets for the treatment of migraine.
Assuntos
Habenula , Transtornos de Enxaqueca , Camundongos , Animais , Neuropeptídeo Y/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Habenula/metabolismo , Hiperalgesia/tratamento farmacológico , Fotofobia , Transtornos de Enxaqueca/tratamento farmacológicoRESUMO
BACKGROUND: Gut microbial dysbiosis and gut-brain axis dysfunction have been implicated in the pathophysiology of migraine. However, it is unclear whether migraine-related cephalic allodynia could induce the alteration of gut microbial composition. METHODS: A classic migraine rat model was established by repeated dural infusions of inflammatory soup (IS). Periorbital mechanical threshold and nociception-related behaviors were used to evaluate IS-induced cephalic allodynia and the preventive effect of topiramate. The alterations in gut microbial composition and potential metabolic pathways were investigated based on the results of 16 S rRNA gene sequencing. Microbiota-related short-chain fatty acids and tryptophan metabolites were detected and quantified by mass spectrometry analysis. RESULTS: Repeated dural IS infusions induced cephalic allodynia (decreased mechanical threshold), migraine-like behaviors (increased immobility time and reduced moving distance), and microbial composition alteration, which were ameliorated by the treatment of topiramate. Decreased Lactobacillus was the most prominent biomarker genus in the IS-induced alteration of microbial composition. Additionally, IS infusions also enhanced metabolic pathways of the gut microbiota in butanoate, propanoate, and tryptophan, while the increased tryptophan-related metabolites indole-3-acetamide and tryptophol in feces could be the indicators. CONCLUSIONS: Inflammatory dural stimulation-induced cephalic allodynia causes the alterations of gut microbiota profile and microbial metabolic pathways.
Assuntos
Microbioma Gastrointestinal , Transtornos de Enxaqueca , Animais , Microbioma Gastrointestinal/genética , Humanos , Hiperalgesia/metabolismo , Ratos , Ratos Sprague-Dawley , Topiramato , TriptofanoRESUMO
BACKGROUND: Neuroimmunology is a rapidly expanding field, and there have been recent discoveries of new antibodies and neurological syndromes. Most of the current clinical studies have focused on disorders involving one specific antibody. We have summarized a class of antibodies that target common neuronal epitopes, and we have proposed the term "anti-neuron antibody syndrome" (ANAS). In this study, we aimed to clarify the clinical range and analyse the clinical features, cytokines/chemokines and predictors in ANAS. METHODS: This was a retrospective cohort study investigating patients with neurological manifestations that were positive for anti-neuron antibodies. RESULTS: A total of 110 patients were identified, of which 43 patients were classified as having autoimmune encephalitis (AE) and the other 67 were classified as having paraneoplastic neurological syndrome (PNS). With regards to anti-neuron antibodies, 42 patients tested positive for anti-N-methyl-D-aspartate receptor (NMDAR) antibody, 19 for anti-Hu, 14 for anti-Yo and 12 for anti-PNMA2 (Ma2). There were significant differences between the ANAS and control groups in serum B cell-activating factor (BAFF) levels and in cerebrospinal fluid (CSF) C-X-C motif chemokine10 (CXCL10), CXCL13, interleukin10 (IL10), BAFF and transforming growth factor ß1 (TGFß1) levels. Predictors of poor outcomes included having tumours (P = 0.0193) and having a chronic onset (P = 0.0306), and predictors of relapses included having lower levels of CSF BAFF (P = 0.0491) and having a larger ratio of serum TGFß1/serum CXCL13 (P = 0.0182). CONCLUSIONS: Most patients with ANAS had a relatively good prognosis. Having tumours and a chronic onset were both associated with poor outcomes. CSF BAFF and the ratio of serum TGFß1/serum CXCL13 were associated with relapses.
Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/diagnóstico , Citocinas/sangue , Neurônios/imunologia , Adolescente , Adulto , Idoso , Doenças Autoimunes/sangue , Doenças Autoimunes/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto JovemRESUMO
BACKGROUND Hydration remains the mainstay of contrast-induced nephropathy (CIN) prevention, and new biomarkers of cystatin C (Cys C) and neutrophil gelatinase-associated lipocalin (NGAL) have been suggested. This study aimed to explore whether hydration is essential in patients with very low-risk profiles of CIN who are undergoing coronary angiography. MATERIAL AND METHODS A total of 150 patients were enrolled and randomly distributed to 3 groups: the Preventive Group (n=50, saline hydration was given 6 h before the procedure until 12 h after the procedure), the Remedial Group (n=50, saline hydration was given after procedure for 12 h), and the No Hydration (NH) group (n=50, saline was only given during the procedure). Serum creatinine (Cr), Cys C, and urinary NGAL were tested 3 times at different times. RESULTS Six patients were excluded because of Mehran risk score >2. There was no CIN among 144 individuals. At 24 h and at 72 h after the procedure, we found no significant differences in the levels of Cr and Cys C (0.72±0.11 mg/L for the Preventive Group, 0.67±0.14 mg/L for the Remedial Group, and 0.70±0.1 6 mg/L for the NH Group) among the 3 groups. Urinary NGAL also did not differ significantly among the 3 groups at 6 h or at 48 h (6.31±6.60 ng/ml for the Preventive Group, 5.00±5.86 ng/ml for the Remedial Group, and 6.97±6.37 ng/ml for the NH Group) after the procedure. Subgroup analysis in patients who underwent percutaneous coronary intervention (PCI) showed that there was no significant difference in serum Cr, Cys C, or urinary NGAL at different time points among the 3 groups. CONCLUSIONS Saline hydration during the perioperative period might be unnecessary in patients with very low-risk profiles of CIN.
Assuntos
Meios de Contraste/efeitos adversos , Nefropatias/induzido quimicamente , Biomarcadores/sangue , Angiografia Coronária/métodos , Creatinina/sangue , Feminino , Humanos , Nefropatias/sangue , Nefropatias/metabolismo , Lipocalina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/métodos , Estudos Prospectivos , Fatores de RiscoRESUMO
Atrial fibrillation (AF) is a common cardiac arrhythmia that induces serious complications. However, pharmacological treatments of AF remain challenging. This study aimed to screen crucial long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and messenger RNA (mRNAs) for AF using the microarray datasets (lncRNAs and mRNAs: GSE79768, GSE115574; miRNAs: GSE68475) collected from the Gene Expression Omnibus database. Weighted correlation network analysis of GSE79768 and GSE115574 datasets identified five modules were highly related to AF status. Among 118 module-related differentially expressed mRNAs, FBXW7, EGFR, CXCR2, ROCK1 and UBE2D1 were considered as hub genes according to the gene significance, module membership and the topological characteristics for the nodes in the protein-protein interaction network. lncRNA MIR100HG and LINC01105 may function by co-expressing with (MIR100HG-ROCK1/FBXW7/UBE2D1, LINC01105-EGFR) mRNAs or sponging miRNAs to regulate mRNAs (LINC01105-miR-125a-3p-EGFR, MIR100HG-miR-200b-3p- FBXW7, MIR100HG-miR-561-3p-CXCR2, MIR100HG-miR-548z-UBE2D1). Connectivity Map and Comparative Toxicogenomics Database searches predicted dexamethasone may treat AF by reversing the expression of MIR100HG; artemisinin may reverse the expression of hub DEGs. In conclusion, our results may provide novel molecular mechanisms and potential therapeutic targets and drugs for AF.
Assuntos
Fibrilação Atrial , MicroRNAs , RNA Longo não Codificante , Fibrilação Atrial/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Quinases Associadas a rhoRESUMO
Microglia-induced neuroinflammation plays a vital role in the etiology and progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. The neuroprotective role of androgens, including testosterone and its metabolite dihydrotestosterone (DHT), has been increasingly demonstrated in these diseases, but few studies investigated the effects of androgen on neuroinflammation. This study investigated the role of DHT in lipopolysaccharide (LPS)-induced neuroinflammation, neuronal damage and behavioral dysfunction, as well as underlying mechanisms. We showed that DHT inhibited LPS-induced release of proinflammatory factors, including TNF-α, IL-1ß, IL-6; iNOS, COX-2, NO, and PGE2 in BV2 cells and primary microglia by suppressing the TLR4-mediated NF-κB and MAPK p38 signaling pathways, thus protecting SH-SY5Y neurons from inflammatory damage induced by activated microglia. In an LPS-induced neuroinflammation mouse model, endogenous DHT depletion by castration exacerbated inflammatory responses by upregulating the levels of TNF-α, IL-1ß, IL-6, iNOS, and COX-2 in the serum and brain by increasing the LR4-mediated NF-κB and MAPK pathway activation, but these effects were restored by exogenous DHT supplementation. Moreover, DHT also regulated the mRNA levels of the anti-inflammatory cytokines IL-10 and IL-13 in the brain. In addition, DHT modulated the expression of Aß, the apoptotic proteins caspase-3, Bcl-2, and Bax, and synaptophysin, as well as neuronal damage in LPS-treated mouse brains. Further behavioral tests revealed that DHT ameliorated LPS-induced spatial and learning impairment and motor incoordination, and partly improved the locomotor activity in LPS-injected mice. Therefore, this study suggests that DHT exerts anti-neuroinflammatory and neuroprotective effects; thus, androgen replacement therapy is a potential therapeutic strategy for improving cognitive and behavioral function in neuroinflammation-related diseases.
Assuntos
Androgênios/farmacologia , Di-Hidrotestosterona/farmacologia , Inflamação/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Androgênios/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Di-Hidrotestosterona/metabolismo , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common complication after orthopedic surgery, which is not conducive to the prognosis of the elderly. AIMS: We performed this study to investigate the effects of oxycodone applied for patient-controlled intravenous analgesia (PCIA) on postoperative cognitive function in elderly patients after total hip arthroplasty (THA). METHODS: Ninety-nine participants were enrolled and allocated into two groups: oxycodone group (group O) and sufentanil group (group S). The primary outcome was the incidence of POCD, diagnosed according to the changes in the Mini-mental status examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. The secondary outcomes included the plasma levels of S-100B protein and neuron-specific enolase (NSE), the amount of postoperative analgesic consumption and the incidence of adverse reactions. RESULTS: The incidence of POCD was significantly lower in patients receiving oxycodone up to the 3rd postoperative day (POD, 1st POD 27.3% vs. 51.1%, P = 0.021; 3rd POD 20.5% vs. 40.0%, P = 0.045), as compared to patients receiving sufentanil. The MMSE and MoCA scores of both groups decreased to varying degrees. However, compared with group S, the MMSE scores at 1st POD, 3rd POD, 5th POD and 7st POD in group O were higher than that in group S, while MoCA scores at 1st POD, 3rd POD and 5th POD in group O were higher. Compared with group S, the plasma levels of S-100B protein in group O at 4 h, 8 h, 12 h post-surgery were lower. While the plasma levels of NSE in group O at 4 h, 8 h, 12 h, 24 h post-surgery were lower. Number of PCIA boluses and consumption of analgesic drug during the first two POD were similar between two groups. However, postoperative incidence of nausea, vomiting and pruritus was significantly lower in patients receiving oxycodone. CONCLUSION: Oxycodone applied for PCIA in elderly patients after THA could reduce the incidence of POCD, improve postoperative cognitive function and decrease the adverse reactions.
Assuntos
Analgésicos Opioides/uso terapêutico , Artroplastia de Quadril , Cognição , Oxicodona/uso terapêutico , Idoso , Analgesia Controlada pelo Paciente , Analgésicos Opioides/efeitos adversos , Artroplastia de Quadril/efeitos adversos , Humanos , Pessoa de Meia-Idade , Oxicodona/efeitos adversos , Dor Pós-Operatória/prevenção & controle , Período Pós-Operatório , Sufentanil/efeitos adversos , Sufentanil/uso terapêuticoRESUMO
PURPOSE: To investigate the impact of menstrual cycle on patients undergoing gynecological endoscopic surgery. PATIENTS AND METHODS: 220 patients scheduled for gynecological endoscopic surgery under general anesthesia were selected. The patients were divided into three groups based on 3 phases of menstrual cycle which are the follicular phase (Group F), ovulatory phase (Group O) or luteal phase (Group L). It is based on their duration of menstruation and the last day of menstrual bleeding from the date of surgery. Primary outcomes were the incidences of early and late postoperative nausea and vomiting (PONV) in the three patient groups. Preoperative venous blood was taken to determine the estrogen and progesterone levels of the patients. RESULTS: A total of 207 patients were enrolled. The incidence of early PONV was highest in group O (22.22% vs 43.33% vs 17.86%, P < 0.01). Multivariate logistic regression showed that menstrual cycle (P < 0.01) and sufentanil dosage (P < 0.05) were independent risk factors for early PONV, menstrual cycle (P = 0.03) and intraoperative hypotension (P = 0.03) were independent risk factors for late PONV. After the propensity matching, the incidences of early and late PONV in group O were both higher than that in other two groups (19.23% vs 44.68% vs 16.90%, P < 0.01; 53.80% vs 72.34% vs 45.07%, P = 0.01). CONCLUSION: The incidence of PONV after gynecological endoscopic surgery was different in patients with different menstrual cycles, with the highest incidence in ovulation.
Assuntos
Anestesia Geral , Náusea e Vômito Pós-Operatórios , Anestesia Geral/efeitos adversos , Feminino , Procedimentos Cirúrgicos em Ginecologia/efeitos adversos , Humanos , Ciclo Menstrual , Náusea e Vômito Pós-Operatórios/epidemiologia , SufentanilRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by continuous flow limitation and the immune system including macrophages and regulatory T lymphocytes (Tregs) is involved in COPD pathogenesis. In our previous study, we investigated that TGF-ß/BAMBI pathway was associated with COPD by regulating the balance of Th17/Treg. However, the role of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a pseudoreceptor of TGF-ß signalling pathway, in regulating the immune system of COPD patients has not been fully studied. Hence, we speculate that the pseudoreceptor BAMBI may play roles in the regulation of M2 macrophages to induce the differentiation of CD4+ naïve T cells into Tregs and influence the immune response in COPD. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy nonsmokers (n = 12), healthy smokers (n = 10) and COPD patients (n = 20). Naïve CD4+ T cells and monocytes-induced macrophages were used for coculture assays. The phenotypic characteristics of macrophages and Tregs were determined by flow cytometry. The expression levels of BAMBI and the TGF-ß/Smad pathway members in M2 macrophages were measured by a Western blot analysis. The monocyte-derived macrophages were stimulated with cigarette smoke extract (CSE, concentration of 0.02%) to simulate the smoking process in humans. pCMV-BAMBI was transfected into monocyte-derived M2 macrophages for subsequent co-culture assays and signalling pathway analysis. RESULTS: Our results showed that M2 macrophages could induce the differentiation of Tregs through the TGF-ß/Smad signalling pathway. In addition, monocyte-derived macrophages from COPD patients highly expressed BAMBI, and had a low capacity to induce Tregs differentiation. The expression of BAMBI and the forced expiratory volume in 1 second (FEV1%) were negatively correlated in COPD. Furthermore, overexpression of BAMBI promoted the conversion of M2 macrophages to M1 macrophages via the TGF-ß/Smad pathway. CONCLUSIONS: We demonstrated that BAMBI could promote the polarization process of M2 macrophages to M1 macrophages via the TGF-ß/Smad signalling pathway and that overexpression of BAMBI could decrease the ability of M2 macrophages to induce Treg differentiation. These findings may provide a potential mechanism by which blocking BAMBI could improve immune function to regulate COPD inflammatory conditions.
Assuntos
Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Técnicas de Cocultura , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fumaça/efeitos adversos , Fumar/metabolismo , NicotianaRESUMO
Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we reported that sonic hedgehog signaling plays a critical role in the development of bone cancer pain. Tibia bone cavity tumor cell implantation produces bone cancer-related mechanical allodynia, thermal hyperalgesia, and spontaneous and movement-evoked pain behaviors. Production and persistence of these pain behaviors are well correlated with tumor cell implantation-induced up-regulation and activation of sonic hedgehog signaling in primary sensory neurons and spinal cord. Spinal administration of sonic hedgehog signaling inhibitor cyclopamine prevents and reverses the induction and persistence of bone cancer pain without affecting normal pain sensitivity. Inhibiting sonic hedgehog signaling activation with cyclopamine, in vivo or in vitro, greatly suppresses tumor cell implantation-induced increase of intracellular Ca2+ and hyperexcitability of the sensory neurons and also the activation of GluN2B receptor and the subsequent Ca2+-dependent signals CaMKII and CREB in dorsal root ganglion and the spinal cord. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest that targeting sonic hedgehog signaling may be an effective approach for treating bone cancer pain.
Assuntos
Neoplasias Ósseas/complicações , Dor do Câncer/etiologia , Dor do Câncer/patologia , Proteínas Hedgehog/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Animais , Cálcio/metabolismo , Dor do Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Espaço Intracelular/metabolismo , Transplante de Neoplasias , Nociceptividade , Ratos Sprague-Dawley , Medula Espinal/patologia , Regulação para CimaRESUMO
OBJECTIVE: To analyze the clinical features, diagnostic strategies and therapeutic methods associated with paraneoplastic neurological syndromes. METHODS: A retrospective study of paraneoplastic neurological syndromes was performed at a single center in Shandong, East China. The medical records and follow-up data of 28 patients were intensively reviewed between February 2011 and December 2014. RESULTS: Twenty-four (85.7%) patients experienced subacute or chronic onset of disease, and the most common symptoms reported were mild myasthenia and paresthesias. Twenty-five (89.3%) patients presented nervous system lesions prior to occult tumors, and the median time frame between paraneoplastic neurological syndromes onset and the diagnosis of a tumor was 15 weeks. Sensorimotor neuropathy, Lambert-Eaton myasthenic syndrome and limbic encephalitis were the three most common neurological syndromes reported. Elevated serum tumor markers were observed in 44.0% of patients, while 40.7% of patients were positive for onconeural antibodies. Tumors were detected in 21 (75.0%) patients after repeated whole-body screening, and lung carcinomas were the most common primary tumor detected. Seventeen patients received anti-tumor or immunological therapy, and clinical symptoms were relieved in 13 (76.5%) of these patients. CONCLUSIONS: In the majority of paraneoplastic neurological syndromes patients, the onset of disease is subacute or chronic with mild clinical symptoms. Nervous system lesions usually occur prior to occult tumors with complicated and various clinical manifestations. Neither tumor markers nor onconeural antibodies exhibit a high rate of occurrence, while repeated whole-body screening is helpful in identifying occult tumors. Early diagnosis and treatment are crucial to these patients.
Assuntos
Polineuropatia Paraneoplásica/complicações , Polineuropatia Paraneoplásica/epidemiologia , Adulto , Idoso , Antígenos Glicosídicos Associados a Tumores/metabolismo , China/epidemiologia , China/etnologia , Eletroencefalografia , Eletromiografia , Feminino , Seguimentos , Humanos , Queratina-19/metabolismo , Encefalite Límbica/etiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Exame Neurológico , Polineuropatia Paraneoplásica/diagnóstico por imagem , Estudos RetrospectivosRESUMO
The Rho/Rho kinase (ROCK) pathway serves as molecular switches in many biological processes including the immune response. ROCK inhibitors lead to amelioration of some autoimmune diseases. The present study was designed to define whether a selective ROCK inhibitor, fasudil, was effective in experimental autoimmune myasthenia gravis (EAMG) and investigate the underlying mechanisms. Here we found fasudil effectively attenuated the development of ongoing EAMG. Fasudil abolished the antibody production and function by decreasing follicular helper T cells and CD19(+) B cells, especially germinal center B cells. Moreover, fasudil reduced the expression of CD80 on lymph node mononuclear cells. These findings suggest the inhibition of ROCK might be a potential therapeutic strategy for antibody-mediated autoimmune diseases.
Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Miastenia Gravis Autoimune Experimental/terapia , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Autoimunidade/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Feminino , Centro Germinativo/citologia , Centro Germinativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
BACKGROUND/AIMS: Anti-oxidation is an effective strategy for curing acute kidney injury (AKI). Herein, we suggest that extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) might play an anti-oxidative role by enhancing Nrf2/ARE activation in AKI. METHODS: EVs isolated from the conditioned medium of human Wharton's Jelly mesenchymal stromal cells and human foreskin fibroblast were intravenously injected in rats immediately after 45 min of unilateral kidney ischemia. Animals were sacrificed 24 h after injury. RESULTS: Results showed that renal tubular injury was alleviated and renal function was improved by MSC-EVs. Cell apoptosis and sNGAL levels, which reflect kidney cell injury, were reduced. Moreover, MSC-EVs decreased oxidative stress in injured kidney tissues and NRK-52E cells under hypoxia injury. Nrf2/antioxidant response element (ARE) enhancement and HO-1 up-regulation were further observed after MSC-EV treatment both in vivo and in vitro. CONCLUSIONS: MSC-EVs may protect against AKI possibly through anti-oxidation by enhancing Nrf2/ARE activation.