Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Sci ; 14(20): 5350-5360, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234887

RESUMO

As the number of Internet of Things devices is rapidly increasing, there is an urgent need for sustainable and efficient energy sources and management practices in ambient environments. In response, we developed a high-efficiency ambient photovoltaic based on sustainable non-toxic materials and present a full implementation of a long short-term memory (LSTM) based energy management using on-device prediction on IoT sensors solely powered by ambient light harvesters. The power is supplied by dye-sensitised photovoltaic cells based on a copper(ii/i) electrolyte with an unprecedented power conversion efficiency at 38% and 1.0 V open-circuit voltage at 1000 lux (fluorescent lamp). The on-device LSTM predicts changing deployment environments and adapts the devices' computational load accordingly to perpetually operate the energy-harvesting circuit and avoid power losses or brownouts. Merging ambient light harvesting with artificial intelligence presents the possibility of developing fully autonomous, self-powered sensor devices that can be utilized across industries, health care, home environments, and smart cities.

2.
ACS Appl Energy Mater ; 5(2): 1933-1941, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35572067

RESUMO

The TiO2 blocking layer in dye-sensitized solar cells is the most difficult component to evaluate at thicknesses below 50 nm, but it is crucial for the power conversion efficiency. Here, the electrode capacitance of TiO2 blocking layers is tested in aqueous [Fe(CN)6]3-/4- and correlated to the performance of photoanodes in devices based on a [Cu(tmby)2]2+/+ electrolyte. The effects of the blocking layer on electronic recombination in the devices are illustrated with transient photovoltage methods and electrochemical impedance analysis. We have thus demonstrated a feasible and facile method to assess TiO2 blocking layers for the fabrication of dye-sensitized solar cells.

3.
ACS Appl Mater Interfaces ; 14(38): 43456-43462, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36112836

RESUMO

Dye-sensitized solar cells are promising candidates for low-cost indoor power generation applications. However, they currently suffer from complex fabrication and stability issues arising from the liquid electrolyte. Consequently, the so-called zombie cell was developed, in which the liquid electrolyte is dried out to yield a solid through a pinhole after cell assembly. We report a method for faster, simpler, and potentially more reliable production of zombie cells through direct and rapid drying of the electrolyte on the working electrode prior to cell assembly, using an iodide-triiodide redox couple electrolyte as a basis. These "rapid-zombie" cells were fabricated with power conversion efficiencies reaching 5.0%, which was larger than the 4.5% achieved for equivalent "slow" zombie cells. On a large-area cell of 15.68 cm2, over 2% efficiency was achieved at 0.2 suns. After 12 months of dark storage, the "rapid-zombie" cells were remarkably stable and actually showed a moderate increase in average efficiencies.

4.
Chem Sci ; 12(14): 5002-5015, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-34168767

RESUMO

The impending implementation of billions of Internet of Things and wireless sensor network devices has the potential to be the next digital revolution, if energy consumption and sustainability constraints can be overcome. Ambient photovoltaics provide vast universal energy that can be used to realise near-perpetual intelligent IoT devices which can directly transform diffused light energy into computational inferences based on artificial neural networks and machine learning. At the same time, a new architecture and energy model needs to be developed for IoT devices to optimize their ability to sense, interact, and anticipate. We address the state-of-the-art materials for indoor photovoltaics, with a particular focus on dye-sensitized solar cells, and their effect on the architecture of next generation IoT devices and sensor networks.

5.
Chem Sci ; 12(48): 16035-16053, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024126

RESUMO

A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I-/I3 - redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2 back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 µs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 µs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.

6.
Chem Sci ; 11(11): 2895-2906, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-34122790

RESUMO

The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 µW cm-2 at 1000 lux; 32.7%, 50 µW cm-2 at 500 lux and 31.4%, 19 µW cm-2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 1015 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 1020 photons required for training and verification of an artificial neural network were harvested with 64 cm2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA