Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 20(5): e1011453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820569

RESUMO

Mucosa-associated biofilms are associated with many human disease states, but the host mechanisms promoting biofilm remain unclear. In chronic respiratory diseases like cystic fibrosis (CF), Pseudomonas aeruginosa establishes chronic infection through biofilm formation. P. aeruginosa can be attracted to interspecies biofilms through potassium currents emanating from the biofilms. We hypothesized that P. aeruginosa could, similarly, sense and respond to the potassium efflux from human airway epithelial cells (AECs) to promote biofilm. Using respiratory epithelial co-culture biofilm imaging assays of P. aeruginosa grown in association with CF bronchial epithelial cells (CFBE41o-), we found that P. aeruginosa biofilm was increased by potassium efflux from AECs, as examined by potentiating large conductance potassium channel, BKCa (NS19504) potassium efflux. This phenotype is driven by increased bacterial attachment and increased coalescence of bacteria into aggregates. Conversely, biofilm formation was reduced when AECs were treated with a BKCa blocker (paxilline). Using an agar-based macroscopic chemotaxis assay, we determined that P. aeruginosa chemotaxes toward potassium and screened transposon mutants to discover that disruption of the high-sensitivity potassium transporter, KdpFABC, and the two-component potassium sensing system, KdpDE, reduces P. aeruginosa potassium chemotaxis. In respiratory epithelial co-culture biofilm imaging assays, a KdpFABCDE deficient P. aeruginosa strain demonstrated reduced biofilm growth in association with AECs while maintaining biofilm formation on abiotic surfaces. Furthermore, we determined that the Kdp operon is expressed in vivo in people with CF and the genes are conserved in CF isolates. Collectively, these data suggest that P. aeruginosa biofilm formation can be increased by attracting bacteria to the mucosal surface and enhancing coalescence into microcolonies through aberrant AEC potassium efflux sensed by the KdpFABCDE system. These findings suggest host electrochemical signaling can enhance biofilm, a novel host-pathogen interaction, and potassium flux could be a therapeutic target to prevent chronic infections in diseases with mucosa-associated biofilms, like CF.


Assuntos
Biofilmes , Fibrose Cística , Células Epiteliais , Óperon , Potássio , Infecções por Pseudomonas , Pseudomonas aeruginosa , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Humanos , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Potássio/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia
2.
Proc Natl Acad Sci U S A ; 120(9): e2216430120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802441

RESUMO

Monitoring the extracellular environment for danger signals is a critical aspect of cellular survival. However, the danger signals released by dying bacteria and the mechanisms bacteria use for threat assessment remain largely unexplored. Here, we show that lysis of Pseudomonas aeruginosa cells releases polyamines that are subsequently taken up by surviving cells via a mechanism that relies on Gac/Rsm signaling. While intracellular polyamines spike in surviving cells, the duration of this spike varies according to the infection status of the cell. In bacteriophage-infected cells, intracellular polyamines are maintained at high levels, which inhibits replication of the bacteriophage genome. Many bacteriophages package linear DNA genomes and linear DNA is sufficient to trigger intracellular polyamine accumulation, suggesting that linear DNA is sensed as a second danger signal. Collectively, these results demonstrate how polyamines released by dying cells together with linear DNA allow P. aeruginosa to make threat assessments of cellular injury.


Assuntos
Bacteriófagos , Poliaminas , Bacteriófagos/genética , Bactérias , Pseudomonas aeruginosa , DNA
3.
Mol Microbiol ; 116(2): 550-563, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905139

RESUMO

During decades-long infections in the cystic fibrosis (CF) airway, Pseudomonas aeruginosa undergoes selection. One bacterial genetic adaptation often observed in CF isolates is mucA mutations. MucA inhibits the sigma factor AlgU. Mutations in mucA lead to AlgU misregulation, resulting in a mucoid phenotype that is associated with poor CF disease outcomes. Due to its ability to be mutated, mucA is assumed to be dispensable for bacterial viability. Here we show that, paradoxically, a portion of mucA is essential in P. aeruginosa. We demonstrate that mucA is no longer required in a strain lacking algU, that mucA alleles encoding for proteins that do not bind to AlgU are insufficient for viability, and that mucA is no longer essential in mutant strains containing AlgU variants with reduced sigma factor activity. Furthermore, we found that overexpression of algU prevents cell growth in the absence of MucA, and that this phenotype can be rescued by the overproduction of RpoD, the housekeeping sigma factor. Together, these results suggest that in the absence of MucA, the inability to regulate AlgU activity results in the loss of bacterial viability. Finally, we speculate that the essentiality of anti-sigma factors that regulate envelope function may be a widespread phenomenon in bacteria.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Fibrose Cística/microbiologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Fator sigma/antagonistas & inibidores , Fator sigma/genética
4.
Proc Natl Acad Sci U S A ; 115(42): 10780-10785, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275316

RESUMO

Bacteria causing chronic infections are generally observed living in cell aggregates suspended in polymer-rich host secretions, and bacterial phenotypes induced by aggregated growth may be key factors in chronic infection pathogenesis. Bacterial aggregation is commonly thought of as a consequence of biofilm formation; however the mechanisms producing aggregation in vivo remain unclear. Here we show that polymers that are abundant at chronic infection sites cause bacteria to aggregate by the depletion aggregation mechanism, which does not require biofilm formation functions. Depletion aggregation is mediated by entropic forces between uncharged or like-charged polymers and particles (e.g., bacteria). Our experiments also indicate that depletion aggregation of bacteria induces marked antibiotic tolerance that was dependent on the SOS response, a stress response activated by genotoxic stress. These findings raise the possibility that targeting conditions that promote depletion aggregation or mechanisms of depletion-mediated tolerance could lead to new therapeutic approaches to combat chronic bacterial infections.


Assuntos
Antibacterianos/farmacologia , Tolerância a Medicamentos , Entropia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa/isolamento & purificação
5.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795361

RESUMO

Pseudomonas aeruginosa is an important opportunistic human pathogen that lives in biofilm-like cell aggregates at sites of chronic infection, such as those that occur in the lungs of patients with cystic fibrosis and nonhealing ulcers. During growth in a biofilm, P. aeruginosa dramatically increases the production of filamentous Pf bacteriophage (Pf phage). Previous work indicated that when in vivo Pf phage production was inhibited, P. aeruginosa was less virulent. However, it is not clear how the production of abundant quantities of Pf phage similar to those produced by biofilms under in vitro conditions affects pathogenesis. Here, using a murine pneumonia model, we show that the production of biofilm-relevant amounts of Pf phage prevents the dissemination of P. aeruginosa from the lung. Furthermore, filamentous phage promoted bacterial adhesion to mucin and inhibited bacterial invasion of airway epithelial cultures, suggesting that Pf phage traps P. aeruginosa within the lung. The in vivo production of Pf phage was also associated with reduced lung injury, reduced neutrophil recruitment, and lower cytokine levels. Additionally, when producing Pf phage, P. aeruginosa was less prone to phagocytosis by macrophages than bacteria not producing Pf phage. Collectively, these data suggest that filamentous Pf phage alters the progression of the inflammatory response and promotes phenotypes typically associated with chronic infection.


Assuntos
Inflamação/microbiologia , Inflamação/virologia , Inovirus/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/virologia , Pseudomonas aeruginosa/virologia , Animais , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Fibrose Cística/virologia , Pulmão/microbiologia , Pulmão/virologia , Macrófagos/microbiologia , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/fisiologia
6.
Front Cell Infect Microbiol ; 12: 869736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782109

RESUMO

Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.


Assuntos
Biofilmes , Staphylococcus aureus , Antibacterianos/farmacologia , Polímeros/metabolismo , Polímeros/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus/metabolismo
7.
mBio ; 13(1): e0244121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038902

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Assuntos
Inovirus , Superinfecção , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Inovirus/metabolismo , Fímbrias Bacterianas/genética
8.
Front Immunol ; 11: 244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153575

RESUMO

Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.


Assuntos
Bacteriófagos/fisiologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Animais , Biofilmes , Doença Crônica , Resistência Microbiana a Medicamentos , Humanos , Mamíferos , Infecções por Pseudomonas/transmissão , Infecções por Pseudomonas/virologia , Virulência
9.
Microb Cell ; 3(1): 49-52, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28357315

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterial pathogen associated with many types of chronic infection. At sites of chronic infection, such as the airways of people with cystic fibrosis (CF), P. aeruginosa forms biofilm-like aggregates. These are clusters of bacterial cells encased in a polymer-rich matrix that shields bacteria from environmental stresses and antibiotic treatment. When P. aeruginosa forms a biofilm, large amounts of filamentous Pf bacteriophage (phage) are produced. Unlike most phage that typically lyse and kill their bacterial hosts, filamentous phage of the genus Inovirus, which includes Pf phage, often do not, and instead are continuously extruded from the bacteria. Here, we discuss the implications of the accumulation of filamentous Pf phage in the biofilm matrix, where they interact with matrix polymers to organize the biofilm into a highly ordered liquid crystal. This structural configuration promotes bacterial adhesion, desiccation survival, and antibiotic tolerance - all features typically associated with biofilms. We propose that Pf phage make structural contributions to P. aeruginosa biofilms and that this constitutes a novel form of symbiosis between bacteria and bacteriophage.

10.
Cell Host Microbe ; 18(5): 549-59, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26567508

RESUMO

Biofilms-communities of bacteria encased in a polymer-rich matrix-confer bacteria with the ability to persist in pathologic host contexts, such as the cystic fibrosis (CF) airways. How bacteria assemble polymers into biofilms is largely unknown. We find that the extracellular matrix produced by Pseudomonas aeruginosa self-assembles into a liquid crystal through entropic interactions between polymers and filamentous Pf bacteriophages, which are long, negatively charged filaments. This liquid crystalline structure enhances biofilm function by increasing adhesion and tolerance to desiccation and antibiotics. Pf bacteriophages are prevalent among P. aeruginosa clinical isolates and were detected in CF sputum. The addition of Pf bacteriophage to sputum polymers or serum was sufficient to drive their rapid assembly into viscous liquid crystals. Fd, a related bacteriophage of Escherichia coli, has similar biofilm-building capabilities. Targeting filamentous bacteriophage or the liquid crystalline organization of the biofilm matrix may represent antibacterial strategies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Inovirus/fisiologia , Polímeros/metabolismo , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Aminoglicosídeos/farmacologia , Biofilmes/efeitos dos fármacos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA