RESUMO
Many therapeutic antibodies act as antagonists to competitively block cellular signaling pathways. We describe here an approach for the therapeutic use of monoclonal antibodies based on context-dependent attenuation to reduce pathologically high activity while allowing homeostatic signaling in biologically important pathways. Such attenuation is achieved by modulating the kinetics of a ligand binding to its various receptors and regulatory proteins rather than by complete blockade of signaling pathways. The anti-interleukin-1beta (IL-1beta) antibody XOMA 052 is a potent inhibitor of IL-1beta activity that reduces the affinity of IL-1beta for its signaling receptor and co-receptor but not for its decoy and soluble inhibitory receptors. This mechanism shifts the effective dose response of the cytokine so that the potency of IL-1beta bound by XOMA 052 is 20-100-fold lower than that of IL-1beta in the absence of antibody in a variety of in vitro cell-based assays. We propose that by decreasing potency of IL-1beta while allowing binding to its clearance and inhibitory receptors, XOMA 052 treatment will attenuate IL-1beta activity in concert with endogenous regulatory mechanisms. Furthermore, the ability to bind the decoy receptor may reduce the potential for accumulation of antibody.target complexes. Regulatory antibodies like XOMA 052, which selectively modulate signaling pathways, may represent a new mechanistic class of therapeutic antibodies.
Assuntos
Anticorpos Monoclonais/farmacologia , Interleucina-1beta/fisiologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Bioengenharia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células HeLa/efeitos dos fármacos , Células HeLa/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Interleucina-1/fisiologia , Interleucina-1beta/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiologia , Cinética , Ligantes , Luciferases/genética , Pulmão/citologia , Pulmão/fisiologia , NF-kappa B/fisiologia , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/metabolismo , Receptores de Interleucina-1/efeitos dos fármacos , Receptores de Interleucina-1/fisiologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
The product of the von Hippel-Lindau gene, pVHL, targets the alpha subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF) for polyubiquitination in the presence of oxygen. The binding of pVHL to HIF is governed by the enzymatic hydroxylation of conserved prolyl residues within peptidic motifs present in the HIFalpha family members. By using a biochemical purification strategy, we have identified a human homolog of Caenorhabditis elegans Egl9 as a HIF prolyl hydroxylase. In addition, we studied the activity of a structurally diverse collection of low molecular weight inhibitors of procollagen prolyl 4-hydroxylase as potential inhibitors of the HIF hydroxylase. A model compound of this series stabilized HIF in a variety of cells, leading to the increased production of its downstream target, vascular endothelial growth factor.