Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35593440

RESUMO

Planar cell polarity (PCP) is the aligned cell polarity within a tissue plane. Mechanical signals are known to act as a global cue for PCP, yet their exact role is still unclear. In this study, we focused on PCP in the posterior neuroectoderm of Xenopus laevis and investigated how mechanical signals regulate polarity. We reveal that the neuroectoderm is under a greater tension in the anterior-posterior direction and that perturbation of this tension causes PCP disappearance. We show that application of uniaxial stretch to explant tissues can control the orientation of PCP and that cells sense the tissue stretch indirectly through a change in their shape, rather than directly through detection of anisotropic tension. Furthermore, we reveal that PCP is most strongly established when the orientation of tissue stretch coincides with that of diffusion of locally expressed Wnt ligands, suggesting a cooperative relationship between these two PCP regulators.


Assuntos
Polaridade Celular , Via de Sinalização Wnt , Animais , Polaridade Celular/fisiologia , Xenopus laevis
2.
Dev Biol ; 496: 87-94, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739958

RESUMO

The nervous system has various types of cells derived from three neuroectodermal regions: neural plate (NP), neural crest (NC), and preplacodal ectoderm (PPE). Differentiation of these regions is regulated by various morphogens. However, regulatory mechanisms of morphogen distribution in neural patterning are still debated. In general, an extracellular component, heparan sulfate (HS), is essential to regulate morphogen gradients by modulating morphogen binding. The present study focused on an HS modification enzyme, heparan sulfate 6-O-sulfotransferase 1 (Hs6st1), which is highly expressed during the neurula stage in Xenopus. Our present in situ hybridization analysis revealed that Hs6st1 is expressed in the lateral sensorial layer of neuroectoderm. Overexpression of Hs6st1 expands Sox3 (NP marker gene) expression, and slightly dampens FoxD3 (NC marker) expression. Hs6st1 knockout using the CRISPR/Cas9 system also expands the neural plate region, followed by retinal malformation. These results imply that 6-O sulfation, mediated by Hs6st1, selectively regulates morphogen distribution required for neuroectodermal patterning. Among morphogens required for patterning, Fgf8a accumulates on Hs6st1-expressing cells, whereas a secreted BMP antagonist, Noggin, diffuses away from those cells. Thus, cell-autonomous 6-O sulfation of HS at the sensorial layer of neuroectoderm also affects neuroectodermal patterning in neighboring regions, including neural plate and neural crest, not only through accumulation, but also through dispersal of specific morphogens.


Assuntos
Heparitina Sulfato , Placa Neural , Animais , Xenopus laevis/metabolismo , Placa Neural/metabolismo , Heparitina Sulfato/metabolismo , Ectoderma/metabolismo , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Fatores de Transcrição SOXB1
3.
Dev Biol ; 488: 81-90, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598626

RESUMO

Pre-placodal ectoderm (PPE), a horseshoe-shaped narrow region formed during early vertebrate development, gives rise to multiple types of sensory organs and ganglia. For PPE induction, a certain level of FGF signal activation is required. However, it is difficult to reproducibly induce the narrow region with variations in gene expression, including FGF, among individuals. An intracellular regulatory factor of FGF signaling, Dusp6, is expressed by FGF signal activation and inactivates a downstream regulator, ERK1/2, in adult tissues; however, its role in early development is not well known. Here, we reveal that Dusp6 is expressed in an FGF-dependent manner in Xenopus PPE. Gain- and loss-of-function experiments showed that Dusp6 is required for expression of a PPE gene, Six1, and patterning of adjacent regions, neural plate, and neural crest. To reveal the importance of Dusp6 in variable FGF production, we performed Dusp6 knockdown with FGF-bead implantation, which resulted in varying Six1 expression patterns. Taken together, these results suggest that Dusp6 is required for PPE formation and that it contributes to the robust patterning of PPE by mediating FGF signaling.


Assuntos
Ectoderma , Placa Neural , Animais , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Crista Neural/metabolismo , Placa Neural/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
4.
Dev Growth Differ ; 65(3): 175-189, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36861303

RESUMO

We characterized Xenopus laevis C-C motif chemokine ligand 19.L (ccl19.L) and C-C motif chemokine ligand 21.L (ccl21.L) during early Xenopus embryogenesis. The temporal and spatial expression patterns of ccl19.L and ccl21.L tended to show an inverse correlation, except that the expression level was higher in the dorsal side at the gastrula stage. For example, even at the dorsal sector of the gastrulae, ccl19.L was expressed in the axial region and ccl21.L was expressed in the paraxial region. Dorsal overexpression of ccl19.L and ccl21.L and knockdown of Ccl19.L and Ccl21.L inhibited gastrulation, but their functions were different in cell behaviors during morphogenesis. Observation of Keller sandwich explants revealed that overexpression of both ccl19.L and ccl21.L and knockdown of Ccl21.L inhibited the convergent extension movements, while knockdown of Ccl19.L did not. ccl19.L-overexpressing explants attracted cells at a distance and ccl21.L-overexpressing explants attracted neighboring cells. Ventral overexpression of ccl19.L and ccl21.L induced secondary axis-like structures and chrd.1 expression at the ventral side. Upregulation of chrd.1 was induced by ligand mRNAs through ccr7.S. Knockdown of Ccl19.L and Ccl21.L inhibited gastrulation and downregulated chrd.1 expression at the dorsal side. The collective findings indicate that ccl19.L and ccl21.L might play important roles in morphogenesis and dorsal-ventral patterning during early embryogenesis in Xenopus.


Assuntos
Quimiocinas , Animais , Xenopus laevis/metabolismo , Ligantes , Receptores CCR7/metabolismo , Movimento Celular , Quimiocinas/metabolismo , Diferenciação Celular
5.
Dev Growth Differ ; 65(3): 153-160, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36726238

RESUMO

Neural tissue is derived from three precursor regions: neural plate, neural crest, and preplacodal ectoderm. These regions are determined by morphogen-mediated signaling. Morphogen distribution is generally regulated by binding to an extracellular matrix component, heparan sulfate (HS) proteoglycan. HS is modified by many enzymes, such as N-deacetyl sulfotransferase 1 (Ndst1), which is highly expressed in early development. However, functions of HS modifications in ectodermal patterning are largely unknown. In this study, we analyzed the role of Ndst1 using Xenopus embryos. We found that ndst1 was expressed in anterior neural plate and the trigeminal region at the neurula stage. ndst1 overexpression expanded the neural crest (NC) region, whereas translational inhibition reduced not only the trigeminal region, but also the adjacent NC region, especially the anterior part. At a later stage, ndst1 knocked-down embryos showed defects in cranial ganglion formation. We also found that Ndst1 activates Wnt signaling pathway at the neurula stage. Taken together, our results suggest that N-sulfonated HS accumulates Wnt ligand and activates Wnt signaling in ndst1-expressing cells, but that it inhibits signaling in non-ndst1-expressing cells, leading to proper neuroectodermal patterning.


Assuntos
Placa Neural , Sulfotransferases , Via de Sinalização Wnt , Animais , Heparitina Sulfato/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética
6.
Dev Growth Differ ; 64(5): 254-260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35581152

RESUMO

Chemokines play important roles in early embryogenesis, including morphogenesis and cell differentiation, before the immune system is established. We characterized Xenopus laevis CC-type chemokine receptor 7 S (ccr7.S) to clarify its role during early development. ccr7 transcripts were detected ubiquitously in early embryos. Dorsal overexpression of ccr7.S inhibited gastrulation, and ccr7.S mRNA-injected embryos had short axes and widely opened neural folds. Because the Keller sandwich explants of the injected embryos elongated well, ccr7.S might affect cell migration, but not convergent extension movements. Ventral ccr7.S overexpression induced secondary axes and chrd.1 upregulation in gastrula-stage embryos. Animal cap assays showed increased expression of neural and cement gland marker genes at later stages. Ccr7.S knockdown reduced chrd.1 expression and inhibited gastrulation at the dorsal side. Our findings suggest that ccr7.S plays important roles in morphogenetic movement and cell differentiation.


Assuntos
Desenvolvimento Embrionário , Gástrula , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Gástrula/metabolismo , Morfogênese/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
7.
Nature ; 538(7625): 336-343, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762356

RESUMO

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Tetraploidia , Xenopus laevis/genética , Animais , Cromossomos/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Diploide , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Cariótipo , Anotação de Sequência Molecular , Mutagênese/genética , Pseudogenes , Xenopus/genética
8.
Development ; 145(20)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30291163

RESUMO

The pre-placodal ectoderm (PPE) is a specialized ectodermal region which gives rise to the sensory organs and other systems. The PPE is induced from the neural plate border during neurulation, but the molecular mechanism of PPE formation is not fully understood. In this study, we examined the role of a newly identified PPE gene, Fam46a, during embryogenesis. Fam46a contains a nucleoside triphosphate transferase domain, but its function in early development was previously unclear. We show that Fam46a is expressed in the PPE in Xenopus embryos, and Fam46a knockdown induces abnormalities in the eye formation and the body color. At the neurula stage, Fam46a upregulates the expression of PPE genes and inhibits neural crest formation. We also show that Fam46a physically interacts with Smad1/Smad4 and positively regulates BMP signaling. From these results, we conclude that Fam46a is required for PPE formation via the positive regulation of BMP signaling. Our study provides a new mechanism of ectodermal patterning via cell-autonomous regulation of BMP signaling in the PPE.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Ectoderma/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Padronização Corporal , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Crista Neural/embriologia , Crista Neural/metabolismo , Fenótipo , Polinucleotídeo Adenililtransferase , Ligação Proteica , Estabilidade Proteica , Transdução de Sinais , Fatores de Tempo , Proteínas de Xenopus/genética , Xenopus laevis/genética
9.
RNA ; 25(5): 590-599, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745364

RESUMO

RNAs play essential roles in various cellular processes and can be used as biomarkers. Hence, it is important to detect endogenous RNA for understanding diverse cellular functions and diagnosing diseases. To construct a low-cost and easy-to-use RNA detection probe, a chemically unmodified RNA aptamer that binds to a pro-fluorophore to increase its fluorescence is desirable. Here, we focused on Broccoli, a superior variant of Spinach, which is a well-known fluorescent RNA aptamer that binds to DFHBI-1T and emits green fluorescence. We experimentally characterized Broccoli and predicted that it forms a G-quadruplex-based DFHBI-1T recognition region sandwiched between two stems. Based on this, we designed a Broccoli-based RNA detection probe (BRD probe) composed of a sequence of destabilized Broccoli fused with complementary sequences against target RNA. The resulting probe with its target RNA formed a stable three-way junction, named the MT2 three-way junction, which contributed to efficient refolding of the Broccoli structure and allowed for programmable RNA detection with high signal-to-noise ratio and sensitivity. Interestingly, the MT2 three-way junction also could be applied to probe construction of a truncated form of Spinach (Baby Spinach). The BRD and Baby Spinach-based RNA detection probes (BSRD probe) exhibited up to 48- and 140-fold fluorescence enhancements in the presence of their target RNAs and detected small amounts of target RNA that were as low as 160 and 5 nM, respectively. Thus, we experimentally characterized the higher order structure of Broccoli and developed structure-switching aptamer probes for highly sensitive, programmable, RNA detection using an MT2 three-way junction.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas de Química Analítica , Corantes Fluorescentes/química , Sondas RNA/química , RNA/análise , Aptâmeros de Nucleotídeos/síntese química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Corantes Fluorescentes/síntese química , RNA/química , Sondas RNA/síntese química , Razão Sinal-Ruído
10.
Dev Growth Differ ; 63(8): 406-416, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453320

RESUMO

Cell segmentation is crucial in the study of morphogenesis in developing embryos, but it had been limited in its accuracy until machine learning methods for image segmentation like U-Net. However, these methods take too much time. In this study, we provide a rapid method for cell segmentation using machine learning with a personal computer, termed Cell Segmentator using Machine Learning (CSML). CSML took four seconds per image with a personal computer for segmentation on average, much less than time to obtain an image. We observed that F-value of segmentation by CSML was around 0.97, showing better performance than state-of-the-art methods like RACE and watershed in assessing the segmentation of Xenopus ectodermal cells. CSML also showed slightly better performance and faster than other machine learning-based methods such as U-Net. CSML required only one whole embryo image for training a Fully Convolutional Network classifier and only two parameters. To validate its accuracy, we compared CSML to other methods in assessing several indicators of cell shape. We also examined the generality of this approach by measuring its performance of segmentation of independent images. Our data demonstrate the superiority of CSML, and we expect this application to improve efficiency in cell shape studies.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Aprendizado de Máquina , Microcomputadores
11.
Dev Biol ; 426(2): 270-290, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089430

RESUMO

Cell signaling pathways, such as Wnt, Hedgehog (Hh), Notch, and Hippo, are essential for embryogenesis, organogenesis, and tissue homeostasis. In this study, we analyzed 415 genes involved in these pathways in the allotetraploid frog, Xenopus laevis. Most genes are retained in two subgenomes called L and S (193 homeologous gene pairs and 29 singletons). This conservation rate of homeologs is much higher than that of all genes in the X. laevis genome (86.9% vs 60.2%). Among singletons, 24 genes are retained in the L subgenome, a rate similar to the average for all genes (82.8% vs 74.6%). In addition, as general components of signal transduction, we also analyzed 32 heparan sulfate proteoglycan (HSPG)-related genes and eight TLE/Groucho transcriptional corepressors-related genes. In these gene sets, all homeologous pairs have been retained. Transcriptome analysis using RNA-seq data from developmental stages and adult tissues demonstrated that most homeologous pairs of signaling components have variable expression patterns, in contrast to the conservative expression profiles of homeologs for transcription factors. Our results indicate that homeologous gene pairs for cell signaling regulation have tended to become subfunctionalized after allotetraploidization. Diversification of signaling pathways by subfunctionalization of homeologs may enhance environmental adaptability. These results provide insights into the evolution of signaling pathways after polyploidization.


Assuntos
Perfilação da Expressão Gênica , Proteínas Hedgehog/genética , Receptores Notch/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animais , Receptores Frizzled/biossíntese , Receptores Frizzled/genética , Expressão Gênica , Genoma , Proteínas Hedgehog/biossíntese , Anotação de Sequência Molecular , Receptores Notch/biossíntese , Frações Subcelulares/metabolismo , Sintenia , Tetraploidia , Transcriptoma , Proteínas Wnt/biossíntese , Via de Sinalização Wnt/genética , Proteínas de Xenopus/biossíntese
12.
Dev Growth Differ ; 60(4): 226-238, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29700804

RESUMO

Several chemokine molecules control cell movements during early morphogenesis. However, it is unclear whether chemokine molecules affect cell fate. Here, we identified and characterized the CXC-type chemokine ligand in Xenopus laevis, Xenopus CXCLh (XCXCLh), during early embryogenesis. XCXCLh is expressed in the dorsal vegetal region at the gastrula stage. Both overexpression and knockdown of XCXCLh in the dorsal region inhibited gastrulation. XCXCLh contributed to the attraction of mesendodermal cells and accelerated the reassembly of scratched culture cells. Also, XCXCLh contributed to early endodermal induction. Overexpression of VegTmRNA or high concentrations of calcium ions induced XCXCLh expression. XCXCLh may play roles in both cell movements and differentiation during early Xenopus embryogenesis.


Assuntos
Quimiocinas/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Quimiocinas/genética , Endoderma/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
18.
Dev Biol ; 399(1): 164-176, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25576027

RESUMO

In vertebrates, pre-placodal ectoderm and neural crest development requires morphogen gradients and several transcriptional factors, while the involvement of histone modification remains unclear. Here, we report that histone-modifying factors play crucial roles in the development of pre-placodal ectoderm and neural crest in Xenopus. During the early neurula stage, PRDM12 was expressed in the lateral pre-placodal ectoderm and repressed the expression of neural crest specifier genes via methylation of histone H3K9. ChIP-qPCR analyses indicated that PRDM12 promoted the occupancy of the trimethylated histone H3K9 (H3K9me3) on the Foxd3, Slug, and Sox8 promoters. Injection of the PRDM12 MO inhibited the expression of presumptive trigeminal placode markers and decreased the occupancy of H3K9me3 on the Foxd3 promoter. Histone demethylase Kdm4a also inhibited the expression of presumptive trigeminal placode markers in a similar manner to PRDM12 MO and could compensate for the effects of PRDM12. ChIP-qPCR analyses revealed that promotion of the occupancy of H3K9me3 on the Foxd3, Slug, and Sox8 promoters was inhibited by Kdm4a overexpression. Taken together, these data indicate that histone modification was essential for pre-placodal ectoderm and neural crest development.


Assuntos
Proteínas de Transporte/genética , Ectoderma/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Proteínas do Tecido Nervoso/genética , Crista Neural/metabolismo , Proteínas de Xenopus/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Western Blotting , Proteínas de Transporte/metabolismo , Ectoderma/embriologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona Desmetilases/metabolismo , Hibridização In Situ , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/embriologia , Regiões Promotoras Genéticas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo
19.
J Theor Biol ; 410: 44-54, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27647257

RESUMO

Planar cell polarity is an important property of epithelial tissue. The boundary propagation model was proposed as the mechanism of PCP induction, while it has been doubted whether it can induce PCP on wide tissue. Using simulation, a set of proteins can be shown to induce PCP, but it does not explain why and how the set can induce PCP. In this study, we made theoretical model and simulation model to explore when and how the boundary propagation induce PCP. We incorporated multipolar cell in our model. Intracellular interactions have been thought to amplify polarity of a cell, but we propose instead that they are to keep a cell-cell interface polarized, and bipolarity of cell is obtained as a result. We show that the boundary propagation can propagate polarity as long as average size of local cell group is constant and levels of PCP proteins are balanced in every cell. Therefore, this model provide an explanation for PCP induction on a tissue with multiple cell types.


Assuntos
Comunicação Celular/fisiologia , Polaridade Celular/fisiologia , Células Epiteliais/fisiologia , Modelos Biológicos , Animais , Células Epiteliais/citologia , Epitélio/fisiologia , Humanos
20.
Genesis ; 53(10): 652-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26249012

RESUMO

The neural-epidermal boundary tissues include the neural crest and preplacodal ectoderm (PPE) as primordial constituents. The PPE region is essential for the development of various sensory and endocrine organs, such as the anterior lobe of the pituitary, olfactory epithelium, lens, trigeminal ganglion, and otic vesicles. During gastrulation, a neural region is induced in ectodermal cells that interacts with mesendodermal tissue and responds to several secreted factors. Among them, inhibition of bone morphogenetic protein (BMP) in the presumptive neuroectoderm is essential for the induction of neural regions, and formation of a Wnt and fibroblast growth factor (FGF) signaling gradient along the midline determines anterior-posterior patterning. In this study, we attempted to specifically induce PPE cells from undifferentiated Xenopus cells by regulating BMP, Wnt, and FGF signaling. We showed that the proper level of BMP inhibition with an injection of truncated BMP receptor or treatment with a chemical antagonist triggered the expression of PPE genes. In addition, by varying the amount of injected chordin, we optimized specific expression of the PPE genes. PPE gene expression is increased by adding an appropriate dose of an FGF receptor antagonist. Furthermore, co-injection with either wnt8 or the Wnt inhibitor dkk-1 altered the expression levels of several region-specific genes according to the injected dose. We specifically induced PPE cell differentiation in animal cap cells from early-stage Xenopus embryos by modulating BMP, Wnt, and FGF signaling. This is not the first research on placode induction, but our simple method could potentially be applied to mammalian stem cell systems.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Ectoderma/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Proteínas Wnt/genética , Xenopus laevis/genética , Animais , Padronização Corporal/genética , Ectoderma/citologia , Ectoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicoproteínas/genética , Cabeça/embriologia , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Microinjeções , Crista Neural/embriologia , Crista Neural/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Crânio/citologia , Crânio/embriologia , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA