Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 151(5): 951-63, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178118

RESUMO

The inactive X chromosome's (Xi) physical territory is microscopically devoid of transcriptional hallmarks and enriched in silencing-associated modifications. How these microscopic signatures relate to specific Xi sequences is unknown. Therefore, we profiled Xi gene expression and chromatin states at high resolution via allele-specific sequencing in mouse trophoblast stem cells. Most notably, X-inactivated transcription start sites harbored distinct epigenetic signatures relative to surrounding Xi DNA. These sites displayed H3-lysine27-trimethylation enrichment and DNaseI hypersensitivity, similar to autosomal Polycomb targets, yet excluded Pol II and other transcriptional hallmarks, similar to nontranscribed genes. CTCF bound X-inactivated and escaping genes, irrespective of measured chromatin boundaries. Escape from X inactivation occurred within, and X inactivation was maintained exterior to, the area encompassed by Xist in cells subject to imprinted and random X inactivation. The data support a model whereby inactivation of specific regulatory elements, rather than a simple chromosome-wide separation from transcription machinery, governs gene silencing over the Xi.


Assuntos
Inativação Gênica , Elementos Reguladores de Transcrição , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Código das Histonas , Elementos Nucleotídeos Longos e Dispersos , Camundongos , Proteínas do Grupo Polycomb/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
2.
J Biol Chem ; 300(6): 107406, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782208

RESUMO

The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ∼130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T > C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole-genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T > C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially protects noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.

3.
Nucleic Acids Res ; 51(17): 9075-9100, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37471042

RESUMO

Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Animais , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA de Cadeia Simples/genética , Mutação , Compostos de Epóxi , Mutagênicos/toxicidade , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias/genética
4.
J Biol Chem ; 299(5): 104705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059180

RESUMO

The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses both inherited and sporadic cancers in humans. In eukaryotes, the MutSα-dependent and MutSß-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole genome level in Saccharomyces cerevisiae. We found that inactivation of MutSα-dependent MMR increases the genome-wide mutation rate by ∼17-fold and loss of MutSß-dependent MMR elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSß-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1- to 6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSß-dependent MMR for protection from 1-bp insertions, while MutSß-dependent MMR has a more critical role in the defense against 1-bp deletions and 2- to 6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSß-dependent MMR pathways.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
5.
Mol Cell ; 63(4): 662-673, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27453047

RESUMO

DNA polymerase theta (Pol θ)-mediated end joining (TMEJ) has been implicated in the repair of chromosome breaks, but its cellular mechanism and role relative to canonical repair pathways are poorly understood. We show that it accounts for most repairs associated with microhomologies and is made efficient by coupling a microhomology search to removal of non-homologous tails and microhomology-primed synthesis across broken ends. In contrast to non-homologous end joining (NHEJ), TMEJ efficiently repairs end structures expected after aborted homology-directed repair (5' to 3' resected ends) or replication fork collapse. It typically does not compete with canonical repair pathways but, in NHEJ-deficient cells, is engaged more frequently and protects against translocation. Cell viability is also severely impaired upon combined deficiency in Pol θ and a factor that antagonizes end resection (Ku or 53BP1). TMEJ thus helps to sustain cell viability and genome stability by rescuing chromosome break repair when resection is misregulated or NHEJ is compromised.


Assuntos
Quebra Cromossômica , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica , Animais , Sistemas CRISPR-Cas , Linhagem Celular Transformada , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Genótipo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Camundongos Knockout , Fenótipo , Fatores de Tempo , DNA Polimerase teta
6.
Nucleic Acids Res ; 50(13): 7451-7464, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776120

RESUMO

Acetaldehyde (AA), a by-product of ethanol metabolism, is acutely toxic due to its ability to react with various biological molecules including DNA and proteins, which can greatly impede key processes such as replication and transcription and lead to DNA damage. As such AA is classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC). Previous in vitro studies have shown that AA generates bulky adducts on DNA, with signature guanine-centered (GG→TT) mutations. However, due to its weak mutagenicity, short chemical half-life, and the absence of powerful genetic assays, there is considerable variability in reporting the mutagenic effects of AA in vivo. Here, we used an established yeast genetic reporter system and demonstrate that AA treatment is highly mutagenic to cells and leads to strand-biased mutations on guanines (G→T) at a high frequency on single stranded DNA (ssDNA). We further demonstrate that AA-derived mutations occur through lesion bypass on ssDNA by the translesion polymerase Polζ. Finally, we describe a unique mutation signature for AA, which we then identify in several whole-genome and -exome sequenced cancers, particularly those associated with alcohol consumption. Our study proposes a key mechanism underlying carcinogenesis by acetaldehyde-mutagenesis of single-stranded DNA.


Assuntos
Acetaldeído , DNA de Cadeia Simples , Acetaldeído/química , Acetaldeído/metabolismo , Acetaldeído/toxicidade , DNA/genética , Adutos de DNA/genética , Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Guanina/metabolismo , Mutagênese , Mutagênicos , Mutação
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879573

RESUMO

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Assuntos
Microbiota/fisiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Imunidade , Microbiota/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose/imunologia , Virulência
9.
Nature ; 543(7646): 513-518, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297714

RESUMO

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Microbiota/fisiologia , Fosfatos/metabolismo , Imunidade Vegetal , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/imunologia , Mutação , Imunidade Vegetal/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 49(10): 5623-5636, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34019669

RESUMO

Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol Î´) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol Î´ are the observations that Pol Î´ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme.


Assuntos
DNA Polimerase III/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Domínio Catalítico , DNA Polimerase Dirigida por DNA/metabolismo , Ligação Proteica
11.
Proc Natl Acad Sci U S A ; 117(45): 28221-28231, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106418

RESUMO

Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, providing support for an additional nonindependent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole-genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14- to 150-fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.


Assuntos
Genoma Fúngico/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Perda de Heterozigosidade/genética , Mutação/genética , Recombinação Genética/genética
12.
PLoS Genet ; 16(3): e1008646, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150559

RESUMO

Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromere DNA sequences are diverse and often repetitive, making them challenging to assemble and identify. Here, we describe centromeres in an oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus at different life stages and during nuclear division. We report an improved genome assembly of the P. sojae reference strain, which enabled identification of 15 enriched CENP-A binding regions as putative centromeres. By focusing on a subset of these regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the histone modification H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3. Strikingly, we discovered a Copia-like transposon (CoLT) that is highly enriched in the CENP-A chromatin. Similar clustered elements are also found in oomycete relatives of P. sojae, and may be applied as a criterion for prediction of oomycete centromeres. This work reveals a divergence of centromere features in oomycetes as compared to other organisms in the Stramenopila-Alveolata-Rhizaria (SAR) supergroup including diatoms and Plasmodium falciparum that have relatively short and simple regional centromeres. Identification of P. sojae centromeres in turn also advances the genome assembly.


Assuntos
Centrômero/genética , Oomicetos/genética , Phytophthora/genética , Alveolados/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Heterocromatina/genética , Histonas/genética , Cinetocoros/metabolismo , Cinetocoros/fisiologia , Phytophthora/metabolismo , Rhizaria/genética , Estramenópilas/genética
13.
PLoS Biol ; 17(9): e3000464, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568516

RESUMO

A single cancer genome can harbor thousands of clustered mutations. Mutation signature analyses have revealed that the origin of clusters are lesions in long tracts of single-stranded (ss) DNA damaged by apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases, raising questions about molecular mechanisms that generate long ssDNA vulnerable to hypermutation. Here, we show that ssDNA intermediates formed during the repair of gamma-induced bursts of double-strand breaks (DSBs) in the presence of APOBEC3A in yeast lead to multiple APOBEC-induced clusters similar to cancer. We identified three independent pathways enabling cluster formation associated with repairing bursts of DSBs: 5' to 3' bidirectional resection, unidirectional resection, and break-induced replication (BIR). Analysis of millions of mutations in APOBEC-hypermutated cancer genomes revealed that cancer tolerance to formation of hypermutable ssDNA is similar to yeast and that the predominant pattern of clustered mutagenesis is the same as in resection-defective yeast, suggesting that cluster formation in cancers is driven by a BIR-like mechanism. The phenomenon of genome-wide burst of clustered mutagenesis revealed by our study can play an important role in generating somatic hypermutation in cancers as well as in noncancerous cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Genoma Fúngico/efeitos da radiação , Mutagênese , Neoplasias/genética , Desaminases APOBEC/metabolismo , Raios gama , Humanos , Neoplasias/enzimologia , Saccharomyces cerevisiae
14.
Prenat Diagn ; 42(5): 567-573, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265090

RESUMO

OBJECTIVE: Sequencing cell-free DNA now allows detection of large chromosomal abnormalities and dominant Mendelian disorders in the prenatal period. Improving upon these methods would allow newborn screening programs to begin with prenatal genetics, ultimately improving the management of rare genetic disorders. METHODS: As a pilot study, we performed exome sequencing on the cell-free DNA from three mothers with singleton pregnancies to assess the viability of broad sequencing modalities in a noninvasive prenatal setting. RESULTS: We found poor resolution of maternal and fetal genotypes due to both sampling and technical issues. CONCLUSION: We find broad sequencing modalities inefficient for noninvasive prenatal applications. Alternatively, we suggest a more targeted path forward for noninvasive prenatal genotyping.


Assuntos
Ácidos Nucleicos Livres , Exoma , Feminino , Feto , Humanos , Recém-Nascido , Projetos Piloto , Gravidez , Diagnóstico Pré-Natal/métodos , Sequenciamento do Exoma/métodos
15.
Nucleic Acids Res ; 48(7): 3692-3707, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32133535

RESUMO

Alkylation is one of the most ubiquitous forms of DNA lesions. However, the motif preferences and substrates for the activity of the major types of alkylating agents defined by their nucleophilic substitution reactions (SN1 and SN2) are still unclear. Utilizing yeast strains engineered for large-scale production of single-stranded DNA (ssDNA), we probed the substrate specificity, mutation spectra and signatures associated with DNA alkylating agents. We determined that SN1-type agents preferably mutagenize double-stranded DNA (dsDNA), and the mutation signature characteristic of the activity of SN1-type agents was conserved across yeast, mice and human cancers. Conversely, SN2-type agents preferably mutagenize ssDNA in yeast. Moreover, the spectra and signatures derived from yeast were detectable in lung cancers, head and neck cancers and tumors from patients exposed to SN2-type alkylating chemicals. The estimates of mutation loads associated with the SN2-type alkylation signature were higher in lung tumors from smokers than never-smokers, pointing toward the mutagenic activity of the SN2-type alkylating carcinogens in cigarettes. In summary, our analysis of mutations in yeast strains treated with alkylating agents, as well as in whole-exome and whole-genome-sequenced tumors identified signatures highly specific to alkylation mutagenesis and indicate the pervasive nature of alkylation-induced mutagenesis in cancers.


Assuntos
Alquilantes/toxicidade , Mutagênese , Mutação , Neoplasias/genética , Adenina/química , Animais , DNA Glicosilases/metabolismo , DNA Fúngico/química , DNA de Cadeia Simples/química , Humanos , Camundongos , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(1): 227-232, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30518559

RESUMO

The four dengue virus (DENV) serotypes are mosquito-borne flaviviruses of humans. The interactions between DENVs and the human host that lead to asymptomatic, mild, or severe disease are poorly understood, in part, because laboratory models are poor surrogates for human DENV disease. Virologists are interested in how the properties of DENVs replicating in people compare with virions propagated on laboratory cell lines, which are widely used for research and vaccine development. Using clinical samples from a DENV type 1 epidemic in Sri Lanka and new ultrasensitive assays, we compared the properties of DENVs in human plasma and after one passage on laboratory cell lines. DENVs in plasma were 50- to 700-fold more infectious than cell culture-grown viruses. DENVs produced by laboratory cell lines were structurally immature and hypersensitive to neutralization by human antibodies compared with DENVs circulating in people. Human plasma and cell culture-derived virions had identical genome sequences, indicating that these phenotypic differences were due to the mature state of plasma virions. Several dengue vaccines are under development. Recent studies indicate that vaccine-induced antibodies that neutralized DENVs in cell culture assays were not sufficient for protecting people from DENV infections. Our results about structural differences between DENVs produced in humans versus cell lines may be key to understanding vaccine failure and developing better models for vaccine evaluation.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Reações Cruzadas , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Genoma Viral/genética , Humanos , Reação em Cadeia da Polimerase , Sri Lanka/epidemiologia , Células Vero
17.
BMC Bioinformatics ; 22(1): 374, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284719

RESUMO

BACKGROUND: As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Many groups have developed methodology for detecting CNVs from ES, but existing methods often perform poorly for small CNVs and rely on large numbers of samples not always available to clinical laboratories. Furthermore, methods often rely on Bayesian approaches requiring user-defined priors in the setting of insufficient prior knowledge. This report first demonstrates the benefit of multiplexed exome capture (pooling samples prior to capture), then presents a novel detection algorithm, mcCNV ("multiplexed capture CNV"), built around multiplexed capture. RESULTS: We demonstrate: (1) multiplexed capture reduces inter-sample variance; (2) our mcCNV method, a novel depth-based algorithm for detecting CNVs from multiplexed capture ES data, improves the detection of small CNVs. We contrast our novel approach, agnostic to prior information, with the the commonly-used ExomeDepth. In a simulation study mcCNV demonstrated a favorable false discovery rate (FDR). When compared to calls made from matched genome sequencing, we find the mcCNV algorithm performs comparably to ExomeDepth. CONCLUSION: Implementing multiplexed capture increases power to detect single-exon CNVs. The novel mcCNV algorithm may provide a more favorable FDR than ExomeDepth. The greatest benefits of our approach derive from (1) not requiring a database of reference samples and (2) not requiring prior information about the prevalance or size of variants.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Algoritmos , Teorema de Bayes , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento do Exoma
18.
New Phytol ; 231(1): 365-381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826751

RESUMO

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Assuntos
Agaricales , Cacau , Solanum lycopersicum , Citocininas , Solanum lycopersicum/genética , Doenças por Fitoplasmas , Doenças das Plantas
19.
Nucleic Acids Res ; 47(18): 9666-9684, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392335

RESUMO

Break induced replication (BIR) is a double strand break repair pathway that can promote genetic instabilities similar to those observed in cancer. Instead of a replication fork, BIR is driven by a migration bubble where asynchronous synthesis between leading and lagging strands leads to accumulation of single-stranded DNA (ssDNA) that promotes mutation. However, the details of the mechanism of mutagenesis, including the identity of the participating proteins, remain unknown. Using yeast as a model, we demonstrate that mutagenic ssDNA is formed at multiple positions along the BIR track and that Pol ζ is responsible for the majority of both spontaneous and damage-induced base substitutions during BIR. We also report that BIR creates a potent substrate for APOBEC3A (A3A) cytidine deaminase that can promote formation of mutation clusters along the entire track of BIR. Finally, we demonstrate that uracil glycosylase initiates the bypass of DNA damage induced by A3A in the context of BIR without formation of base substitutions, but instead this pathway frequently leads to chromosomal rearrangements. Together, the expression of A3A during BIR in yeast recapitulates the main features of APOBEC-induced kataegis in human cancers, suggesting that BIR might represent an important source of these hyper-mutagenic events.


Assuntos
Cromossomos/genética , Citidina Desaminase/genética , Reparo do DNA/genética , Proteínas/genética , Recombinação Genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Humanos , Mutagênese/genética , Mutação , Saccharomyces cerevisiae/genética , Sequenciamento Completo do Genoma
20.
Genome Res ; 27(10): 1674-1684, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28912372

RESUMO

DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers.


Assuntos
Mapeamento Cromossômico , Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Genoma Fúngico , Mutagênese , Alquilação , DNA Fúngico/genética , Estudo de Associação Genômica Ampla , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA