Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 26(11): 7875-84, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20394390

RESUMO

In this paper, we present a theoretical analysis of the dielectric response of a dense suspension of spherical colloidal particles based on a self-consistent cell model. Particular attention is paid to (a) the relationship between the dielectric response and the conductivity response and (b) the connection between the real and imaginary parts of these responses based on the Kramers-Kronig relations. We have thus clarified the analysis of Carrique et al. (Carrique, F.; Criado, C.; Delgado, A. V. J. Colloid Interface Sci. 1993, 156, 117). We have shown that both the conduction and displacement current components are complex quantities with both real and imaginary parts being frequency dependent. The dielectric response exhibits characteristics of two relaxation phenomena: the Maxwell-Wagner and the alpha-relaxations, with the imaginary part being the more sensitive instrument. The inverse Fourier transform of the simulated dielectric response is compared with a phenomenological, two-exponential response function with good agreement obtained. The two fitted decay times also compare well with times extracted from the explicit simulations.

2.
Langmuir ; 26(3): 1656-65, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19757833

RESUMO

A matched asymptotic analysis of the system of equations governing the electrokinetic cell model of ref 4 (Ahualli, S.; Delgado, A.; Miklavcic, S.; White, L. R. Langmuir 2006, 22, 7041) is performed. Asymptotic expressions are obtained for the dynamic mobility and complex conductivity response of a dense suspension of charged spherical particles to an applied electric field. The asymptotic expressions are compared with full numerical calculations of the linear response functions as a function of surface (zeta) potential, electrolyte strength, and particle density. We find that the numerical procedure used is robust and highly accurate at a very high frequency under a wide range of double-layer conditions. The asymptotic form for the dielectric response of the system is accurate to megahertz frequencies. The asymptotic formulas for the other response functions have limited viability as predictive tools within the current range of experimentally accessible frequencies but are useful as checks on numerical calculations.

3.
J Colloid Interface Sci ; 538: 218-227, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30508742

RESUMO

HYPOTHESIS: Under axisymmetric conditions, changes in the thickness of the thin film between a fluid drop and a solid revealed by white light interferometry can provide information about the interaction of the bodies. Thus, in principle one can quantify the force between the surfaces using interferometric information of film thickness profile. This is needed to quantify and analyze drop-solid interactions across complex fluids such as an ionic liquid to independently characterize new surface forces. EXPERIMENTS: Interferometric fringes were obtained in experiments on the interaction between a mercury drop and mica across a film of room temperature ionic liquid. The data is analyzed using a novel formula giving the total force acting on the drop. The calculations are compared with two other approaches to estimating forces. Qualitative and quantitative differences are discussed. FINDINGS: This is the first report of forces measured between mercury and mica across an ionic liquid. The system is subjected to different applied electric potentials. In each case a long ranged, exponentially decaying repulsive force is found. At small separations, the system becomes unstable and the surfaces jump into contact. The comparison of force calculation methods demonstrates the superiority of the force approach proposed here.

4.
J Colloid Interface Sci ; 524: 263-266, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655145

RESUMO

A simple and accurate closed-form expression for the Hamaker constant that best represents experimental surface force data is presented. Numerical comparisons are made with the current standard least squares approach, which falsely assumes error-free separation measurements, and a nonlinear version assuming independent measurements of force and separation are subject to error. The comparisons demonstrate that not only is the proposed formula easily implemented it is also considerably more accurate. This option is appropriate for any value of Hamaker constant, high or low, and certainly for any interacting system exhibiting an inverse square distance dependent van der Waals force.

5.
J Colloid Interface Sci ; 309(2): 342-9, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17343866

RESUMO

In this paper we evaluate the validity of a cell model for the calculation of the dynamic mobility of concentrated suspensions of spheres. The key point is the consideration of the boundary conditions (electrical and hydrodynamic) at the boundary of the fluid cell surrounding a single probe particle. The model proposed is based on a universal criterion for the averages of fluid velocity, electric potential, pressure field or electrochemical properties in the cell. The calculations are checked against a wide set of experimental data on the dynamic mobility of silica suspensions with two different radii, several ionic strengths, and two particle concentrations. The comparison reveals an excellent agreement between theory and experiment, and the model appears to be extremely suitable for correctly predicting the behavior of the dynamic mobility, including the changes in the zeta potential, zeta, with ionic strength, the frequency and amplitude of the Maxwell-Wagner-O'Konski relaxation, and the inertial relaxation occurring at the top of the frequency range accessible to our experimental device.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 1): 061606, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17280077

RESUMO

This paper reports a theoretical study of the electrostatic potential within a so-called pen-heterojunction made up of two semi-infinite, doped semiconductor media separated by an electrolyte region. An external potential is then applied across the entire system. Both the electrostatic potentials and double layer surface forces are studied as functions of the usual double layer system properties, semiconductor properties such as doping concentrations of acceptor and donator atoms, as well as applied potential. We find that both attractive and repulsive forces are possible depending on the surface charges on the electrolyte-semiconductor interfaces, and that these forces can be significantly modified by the applied potential and by the doping levels in the semiconductors.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 1): 052601, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682825

RESUMO

Through a study of the van der Waals interaction between a solid and an air-water interface, we investigate the practical and fundamental problem of the limiting height at which an object can approach a free surface. A numerical study of the interface shape reveals dependencies governed by two disparate length scales associated with the relative strengths of the van der Waals and bouyancy forces, to surface tension. A study of the limits of solvability of the governing equation has led to the principal result: a closed-form expression for the absolute limiting height to which an object can be lowered to the air-water interface. The formula depends explicitly and only on the Hamaker constant of the van der Waals force and the geometry of the solid.

8.
Langmuir ; 25(4): 1961-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19154132

RESUMO

The cell-model electrokinetic theory of Ahualli et al. Langmuir 2006, 22, 7041; Ahualli et al. J. Colloid Interface Sci. 2007, 309, 342; and Bradshaw-Hajek et al. Langmuir 2008, 24, 4512 is applied to a dense suspension of charged spherical particles, to exhibit the system's dielectric response to an applied electric field as a function of solids volume fraction. The model's predictions of effective permittivity and complex conductivity are favorably compared with published theoretical calculations and experimental measurements on dense colloidal systems. Physical factors governing the volume fraction dependence of the dielectric response are discussed.

9.
Langmuir ; 24(9): 4512-22, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18348583

RESUMO

This paper outlines the application of a self-consistent cell-model theory of electrokinetics to the problem of determining the electrical conductivity of a dense suspension of spherical colloidal particles. Numerical solutions of the standard electrokinetic equations, subject to self-consistent boundary conditions, are implemented in formulas for the electrical conductivity appropriate to the particle-averaged cell model of the suspension. Results of calculations as a function of frequency, zeta potential, volume fraction, and electrolyte composition, are presented and discussed.

10.
Langmuir ; 22(16): 6961-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16863246

RESUMO

This article concerns the stability of the air-water interface subjected to a 2D attractive van der Waals stress. The physical problem models the setup of a Wilhelmy plate experiment prior to three-phase contact line formation. We present and employ an unambiguous condition to quantify the stability limit in terms of the distance of closest approach of a solid cylindrical plate of parabolic cross section to the fluid surface as a function of the strength of the van der Waals surface force and plate geometry. A numerical study spanning 4 orders of magnitude of the Hamaker constant and nearly 6 orders of magnitude of solid geometry characterizes the dependence of the stability limit on these physical parameters. Comparisons are also made with a previously published analytical condition guaranteeing a stable deformation of the fluid interface. A possible experiment for testing the theory is also described. Used together with the theory, the technique could be used as an independent means of determining system properties such as the surface tension or Hamaker constant.

11.
Langmuir ; 22(16): 7041-51, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16863258

RESUMO

This paper outlines a complete and self-consistent cell model theory of the electrokinetics of dense spherical colloidal suspensions for general electrolyte composition, frequency of applied field, zeta potential, and particle size. The standard electrokinetic equations, first introduced for any given particle configuration, are made tractable to computation by averaging over particle configurations. The focus of this paper is on the systematic development of suitable boundary conditions at the outer cell boundary obtained from global constraints on the suspension. The approach is discussed in relation to previously published boundary conditions that have often been introduced in an ad hoc manner. Results of a robust numerical calculation of high-frequency colloidal transport properties, such as dynamic mobility, using the present model are presented and compared with some existing dense suspension models.

12.
Langmuir ; 20(8): 3208-20, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15875850

RESUMO

The shape of the air-water interface deformed by a van der Waals stress induced by a paraboloid shaped solid body is addressed and discussed. Emphasis is placed on the existence limit of solutions to the governing Euler-Lagrange equation for the equilibrium shape. Two legitimate solutions, one stable and one unstable, are found to converge at the existence limit, giving a numerical criterion for establishing critical physical conditions guaranteeing absolute stability. Insight is aided by a study of an analogous mechanical problem that exhibits very similar properties. Among numerical data produced are critical lower height limits of the paraboloid to the air-water surface and associated peak deformation heights and their dependencies on physical parameters. Of further interest to experimentalists in the surface force field are the variations in peak deformation height and total surface force on the solid as a function of position of the paraboloid, paraboloid geometry, and strength of the van der Waals stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA