Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14847-14859, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859420

RESUMO

This article presents an experimental demonstration of a spectroscopic method based on the dispersion of the scattering spectrum from laser-illuminated liquid water collected through a rubidium atomic vapor prism cell. Resonant absorption at 780 nm suppresses Mie/Rayleigh scattering and the steep gradients in refractive index near the 780 nm absorption lines separate Brillouin scattering from Raman scattering in liquid water. The opposing spatial displacements of the Stokes and Anti-Stokes shifted Brillouin peaks yield a measurement of their spectral shifts and thus the temperature or salinity of the water. Performance of the prism cell was mapped with a frequency tunable laser for frequency offsets from the center of the rubidium absorption feature of between -15 GHz and 15 GHz and at rubidium cell temperatures between 148 °C and 177 °C. The experimental results are compared with a numerical model and show good agreement with the scattering peak displacements within experimental uncertainties of probe frequency and cell temperature. In the present configuration, the minimum detectable frequency shift is estimated to be 15.5 MHz. Experiments were conducted in water demonstrating the utility of this method for the measurement of water temperature. Liquid water LiDAR was suggested as one of the possible applications for this method and several ways to improve the experimental setup and cell temperature stability were identified.

2.
Opt Lett ; 49(3): 426-429, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300024

RESUMO

This Letter describes, to the best of our knowledge, a new approach to flow tagging, nitric oxide (NO) Ionization Induced Flow Tagging and Imaging (NiiFTI), and presents the first experimental demonstration for single-shot velocimetry in a near Mach 6 hypersonic flow at 250 kHz. The mean velocity of 860 m/s was measured with a single-shot standard deviation of as low as 3.4 m/s and mean velocity uncertainty of 5.5 m/s. NiiFTI is characterized by a long fluorescence lifetime of nitrogen with 1e decay of approximately 50 µs measured in air. The method relies on a single nanosecond laser combined with a high-speed camera, creating an opportunity for the utilization of a typical nitric oxide (NO) laser-induced fluorescence (LIF) experimental setup with minor modifications as well as pulse-burst lasers (PBLs) for ultrahigh repetition rates.

3.
Opt Express ; 31(2): 1764-1775, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785204

RESUMO

This work presents the first, to the best of our knowledge, experimental demonstration of slow light imaging spectroscopy for thermometry of liquid water. This novel technique for measuring temperature relies on detecting the spectral shift of Brillouin peaks in water using the temporal delay through a cell containing an atomic vapor. Stand-off sensing capabilities are achieved by time-domain measurements of Brillouin scattering tuned to be near a rubidium atomic resonance and passed through a cell filled with rubidium vapor. An injection seeded optical parametric oscillator (OPO) is demonstrated to be a versatile light source for slow light imaging spectroscopy applications. The narrow OPO pulse spectrum allows for a precise profiling of slow light features of rubidium and accurate tracking of the temperature dependence of Brillouin scattering spectral shift. A comparison between the experimental data and numerical simulation over a temperature range of 20 to 99 degrees Celsius shows a good agreement for both qualitative and quantitative results.

4.
Epilepsia ; 64(5): 1175-1189, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807867

RESUMO

Animal models of human brain disorders permit researchers to explore disease mechanisms and to test potential therapies. However, therapeutic molecules derived from animal models often translate poorly to the clinic. Although human data may be more relevant, experiments on patients are constrained, and living tissue is unavailable for many disorders. Here, we compare work on animal models and on human tissue for three epileptic syndromes where human tissue is excised therapeutically: (1) acquired temporal lobe epilepsies, (2) inherited epilepsies associated with cortical malformations, and (3) peritumoral epilepsies. Animal models rest on assumed equivalencies between human brains and brains of mice, the most frequently used model animal. We ask how differences between mouse and human brains could influence models. General principles and compromises in model construction and validation are examined for a range of neurological diseases. Models may be judged on how well they predict novel therapeutic molecules or new mechanisms. The efficacy and safety of new molecules are evaluated in clinical trials. We judge new mechanisms by comparing data from work on animal models with data from work on patient tissue. In conclusion, we stress the need to cross-verify findings from animal models and from living human tissue to avoid the assumption that mechanisms are identical.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Síndromes Epilépticas , Humanos , Animais , Camundongos , Epilepsia/genética , Epilepsia/terapia , Encéfalo , Modelos Animais
5.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501738

RESUMO

Ultrasound is an essential tool for guidance of many minimally-invasive surgical and interventional procedures, where accurate placement of the interventional device is critical to avoid adverse events. Needle insertion procedures for anaesthesia, fetal medicine and tumour biopsy are commonly ultrasound-guided, and misplacement of the needle may lead to complications such as nerve damage, organ injury or pregnancy loss. Clear visibility of the needle tip is therefore critical, but visibility is often precluded by tissue heterogeneities or specular reflections from the needle shaft. This paper presents the in vitro and ex vivo accuracy of a new, real-time, ultrasound needle tip tracking system for guidance of fetal interventions. A fibre-optic, Fabry-Pérot interferometer hydrophone is integrated into an intraoperative needle and used to localise the needle tip within a handheld ultrasound field. While previous, related work has been based on research ultrasound systems with bespoke transmission sequences, the new system-developed under the ISO 13485 Medical Devices quality standard-operates as an adjunct to a commercial ultrasound imaging system and therefore provides the image quality expected in the clinic, superimposing a cross-hair onto the ultrasound image at the needle tip position. Tracking accuracy was determined by translating the needle tip to 356 known positions in the ultrasound field of view in a tank of water, and by comparison to manual labelling of the the position of the needle in B-mode US images during an insertion into an ex vivo phantom. In water, the mean distance between tracked and true positions was 0.7 ± 0.4 mm with a mean repeatability of 0.3 ± 0.2 mm. In the tissue phantom, the mean distance between tracked and labelled positions was 1.1 ± 0.7 mm. Tracking performance was found to be independent of needle angle. The study demonstrates the performance and clinical compatibility of ultrasound needle tracking, an essential step towards a first-in-human study.


Assuntos
Tecnologia de Fibra Óptica , Agulhas , Gravidez , Feminino , Humanos , Ultrassonografia , Imagens de Fantasmas , Água , Ultrassonografia de Intervenção/métodos
6.
High Educ (Dordr) ; : 1-18, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36536882

RESUMO

A number of commentators have recently called for a re-examination of the purpose and value of undergraduate education, arguing that change is required if universities are to deliver the value in educational outcomes that students and communities now require for a changing and challenging world (for example, Aoun, 2017; Bok, 2020; Davidson, 2017; Fischman & Gardner, 2022). Indeed, some have argued that such change is necessary to stem an emerging crisis in universities' 'social license to operate' (Bok, 2020). In this paper, we review the case for undergraduate curriculum change and present a case study of one Australian university's engagement with this challenge, describing the reasons for change, the desired outcomes, and some early impacts on students' study patterns. The change took place at the University of Sydney over the period from 2014 to 2021 with a new undergraduate curriculum introduced for commencing students from 2018. Intended to prepare students for a changing world, the new curriculum sought a balance between graduates' expertise in a primary field of study and a set of broader capabilities that would support their capacity for future learning and for creative and effective engagement in life and career, including an understanding of broader intellectual landscapes; the skills for collaboration, invention, and influence; and the integration of knowledge with professional and personal ethics and values. The aspiration to develop such capabilities is shared with many universities around the world, and we describe here how the available evidence base was used to guide whole-of-University curriculum redesign in this case. We also identify areas where further research would be of value.

7.
J Neurosci ; 40(7): 1373-1388, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31896671

RESUMO

Microglia exhibit multiple, phenotype-dependent motility patterns often triggered by purinergic stimuli. However, little data exist on motility of human microglia in pathological situations. Here we examine motility of microglia stained with a fluorescent lectin in tissue slices from female and male epileptic patients diagnosed with mesial temporal lobe epilepsy or cortical glioma (peritumoral cortex). Microglial shape varied from ramified to amoeboid cells predominantly in regions of high neuronal loss or closer to a tumor. Live imaging revealed unstimulated or purine-induced microglial motilities, including surveillance movements, membrane ruffling, and process extension or retraction. At different concentrations, ADP triggered opposing motilities. Low doses triggered process extension. It was suppressed by P2Y12 receptor antagonists, which also reduced process length and surveillance movements. Higher purine doses caused process retraction and membrane ruffling, which were blocked by joint application of P2Y1 and P2Y13 receptor antagonists. Purinergic effects on motility were similar for all microglia tested. Both amoeboid and ramified cells from mesial temporal lobe epilepsy or peritumoral cortex tissue expressed P2Y12 receptors. A minority of microglia expressed the adenosine A2A receptor, which has been linked with process withdrawal of rodent cells. Laser-mediated tissue damage let us test the functional significance of these effects. Moderate damage induced microglial process extension, which was blocked by P2Y12 receptor antagonists. Overall, the purine-induced motility of human microglia in epileptic tissue is similar to that of rodent microglia in that the P2Y12 receptor initiates process extension. It differs in that retraction is triggered by joint activation of P2Y1/P2Y13 receptors.SIGNIFICANCE STATEMENT Microglial cells are brain-resident immune cells with multiple functions in healthy or diseased brains. These diverse functions are associated with distinct phenotypes, including different microglial shapes. In the rodent, purinergic signaling is associated with changes in cell shape, such as process extension toward tissue damage. However, there are little data on living human microglia, especially in diseased states. We developed a reliable technique to stain microglia from epileptic and glioma patients to examine responses to purines. Low-intensity purinergic stimuli induced process extension, as in rodents. In contrast, high-intensity stimuli triggered a process withdrawal mediated by both P2Y1 and P2Y13 receptors. P2Y1/P2Y13 receptor activation has not previously been linked to microglial morphological changes.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Glioma/fisiopatologia , Microglia/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Receptores Purinérgicos P2/fisiologia , Neoplasias Supratentoriais/fisiopatologia , Difosfato de Adenosina/farmacologia , Adulto , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Feminino , Glioma/patologia , Humanos , Microscopia Intravital , Masculino , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Pessoa de Meia-Idade , Lectinas de Plantas , Agonistas Purinérgicos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Neoplasias Supratentoriais/patologia , Esclerose Tuberosa/complicações
8.
J Neurosci ; 38(28): 6411-6425, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29921712

RESUMO

The presubiculum contains head direction cells that are crucial for spatial orientation. Here, we examined the connectivity and strengths of thalamic inputs to presubicular layer 3 neurons projecting to the medial entorhinal cortex in the mouse. We recorded pairs of projection neurons and interneurons while optogenetically stimulating afferent fibers from the anterior thalamic nuclei. Thalamic input differentially affects presubicular neurons: layer 3 pyramidal neurons and fast-spiking parvalbumin-expressing interneurons are directly and monosynaptically activated, with depressing dynamics, whereas somatostatin-expressing interneurons are indirectly excited, during repetitive anterior thalamic nuclei activity. This arrangement ensures that the thalamic excitation of layer 3 cells is often followed by disynaptic inhibition. Feedforward inhibition is largely mediated by parvalbumin interneurons, which have a high probability of connection to presubicular pyramidal cells, and it may enforce temporally precise head direction tuning during head turns. Our data point to the potential contribution of presubicular microcircuits for fine-tuning thalamic head direction signals transmitted to medial entorhinal cortex.SIGNIFICANCE STATEMENT How microcircuits participate in shaping neural inputs is crucial to understanding information processing in the brain. Here, we show how the presubiculum may process thalamic head directional information before transmitting it to the medial entorhinal cortex. Synaptic inputs from the anterior thalamic nuclei excite layer 3 pyramidal cells and parvalbumin interneurons, which mediate disynaptic feedforward inhibition. Somatostatin interneurons are excited indirectly. Presubicular circuits may switch between two regimens depending on the angular velocity of head movements. During immobility, somatostatin-pyramidal cell interactions could support maintained head directional firing with attractor-like dynamics. During rapid head turns, in contrast, parvalbumin-mediated feedforward inhibition may act to tune the head direction signal transmitted to medial entorhinal cortex.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Giro Para-Hipocampal/fisiologia , Animais , Feminino , Masculino , Camundongos , Inibição Neural/fisiologia , Orientação Espacial/fisiologia
9.
Eur J Neurosci ; 50(1): 1759-1778, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30767299

RESUMO

Lipid homeostasis is dysregulated in some neurodegenerative diseases and after brain injuries due to excess glutamate or lack of oxygen. However the kinetics and cell specificity of dysregulation in different groups of lipids during excitotoxic neuronal death are not clear. Here we examined the changes during excitotoxic neuronal death induced by injecting kainic acid (KA) into the CA1 region of mouse hippocampus. We compared neuronal loss and glial cell proliferation with changes in lipid-related transcripts and markers for different lipid groups, over 12 days after KA-treatment. As neurons showed initial signs of damage, transcripts and proteins linked to fatty acid oxidation were up-regulated. Cholesterol biosynthesis induced by transcripts controlled by the transcription factor Srebp2 seems to be responsible for a transient increase in neuronal free cholesterol at 1 to 2 days. In microglia, but not in neurons, Perilipin-2 associated lipid droplets were induced and properties of Nile red emissions suggest lipid contents change over time. After microglial expression of phagocytotic markers at 2 days, some neutral lipid deposits co-localized with lysosome markers of microglia and were detected within putative phagocytotic cups. These data delineate distinct lipid signals in neurons and glial cells during excitotoxic processes from initial neuronal damage to engagement of the lysosome-phagosome system.


Assuntos
Região CA1 Hipocampal/metabolismo , Perfilação da Expressão Gênica , Ácido Caínico/farmacologia , Gotículas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Animais , Biomarcadores/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microscopia Eletrônica , Microscopia de Fluorescência por Excitação Multifotônica , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Regulação para Cima
10.
Opt Lett ; 44(15): 3853-3856, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368985

RESUMO

We present an approach for the measurement of time evolving electric field profiles in atmospheric pressure plasma discharges using electric field induced second harmonic generation (E-FISH). While the E-FISH effect has been known of for some time, recent advances in laser and detection technology have allowed the method to be utilized for spatial measurements of an arbitrarily applied electric field. A cylindrical lens is used to focus the femtosecond laser light to a line and an intensified charge coupled device is used for detection, allowing for one-dimensional (1D) spatial resolution on the order of ∼50 µm. Measurements have been carried out verifying the spatial resolution using a spatially periodic, localized electric field. Calibrated 1D electric field measurements have been completed with a time resolution of 500 ps in a laminar cold atmospheric pressure plasma jet with argon core flow and N2 co-flow powered by a nanosecond (ns) pulse dielectric barrier discharge. The field was shown to propagate as an ionization wave, with a velocity of ∼0.3 mm/ns.

11.
Brain ; 141(12): 3343-3360, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462183

RESUMO

Microglia, the immune cells of the brain, are highly plastic and possess multiple functional phenotypes. Differences in phenotype in different regions and different states of epileptic human brain have been little studied. Here we use transcriptomics, anatomy, imaging of living cells and ELISA measurements of cytokine release to examine microglia from patients with temporal lobe epilepsies. Two distinct microglial phenotypes were explored. First we asked how microglial phenotype differs between regions of high and low neuronal loss in the same brain. Second, we asked how microglial phenotype is changed by a recent seizure. In sclerotic areas with few neurons, microglia have an amoeboid rather than ramified shape, express activation markers and respond faster to purinergic stimuli. The repairing interleukin, IL-10, regulates the basal phenotype of microglia in the CA1 and CA3 regions with neuronal loss and gliosis. To understand changes in phenotype induced by a seizure, we estimated the delay from the last seizure until tissue collection from changes in reads for immediate early gene transcripts. Pseudotime ordering of these data was validated by comparison with results from kainate-treated mice. It revealed a local and transient phenotype in which microglia secrete the human interleukin CXCL8, IL-1B and other cytokines. This secretory response is mediated in part via the NRLP3 inflammasome.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Epilepsia do Lobo Temporal/imunologia , Epilepsia do Lobo Temporal/patologia , Microglia/patologia , Adulto , Idoso , Animais , Epilepsia do Lobo Temporal/metabolismo , Feminino , Humanos , Interleucina-10/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenótipo , Transcriptoma , Adulto Jovem
12.
AIAA J ; 57(5): 1793-1800, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33442067

RESUMO

Femtosecond laser tagging is demonstrated for the first time in R134a (1,1,1,2-Tetrafluoroethane) gas, and in mixtures of R134a with small quantities of air. A systematic study of this tagging method is explored through the adjustment of gas pressure, mixture ratio and laser properties. It is found that the signal strength and lifetime are greatest at low pressures for excitation at both the 400 nm and 800 nm laser wavelengths. The relative intensities of two spectral peaks in the near-UV emission change as a function of gas pressure and can potentially be used for local pressure measurements. Single shot precision in pure R134a and R134a with 5% air is demonstrated in quiescent gas and at the exit of a subsonic pipe flow. One standard deviation (68%) of the uncertainty lies within 5 m/s of the mean velocity in a low pressure quiescent flow using a delay time of 3µs, and 18 m/s in a 230 m/s flow using a delay of 5 µs. The parameter space of these results are chosen to mimic conditions used in the NASA Langley Research Center's Transonic Dynamics Tunnel. The precision and signal lifetime demonstrate the feasibility of using this technique for measuring flowfields that induce airfoil flutter.

13.
Opt Lett ; 43(3): 551-554, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400838

RESUMO

Tagging is demonstrated in argon and nitrogen gases using a femtosecond laser with pulse energies of approximately 70 µJ through a nonresonant ionization process at 267 nm. The signal fluorescence lifetime in pure argon and nitrogen-argon mixtures are measured and found to be long enough to make mean velocity and turbulence measurements in a subsonic flow. In pure argon, the dominating processes involve atomic transitions between 700 and 900 nm. In argon-nitrogen mixtures, nitrogen quenches atomic argon species and the dominant radiating processes are transitions in the nitrogen second positive system. In pure nitrogen, emission on the microsecond time scale comes from the nitrogen first positive system. Lower energy density is needed for tagging and narrower tagged lines are produced using 267 nm as compared to femtosecond laser tagging in argon and nitrogen using 400 nm or 800 nm. Velocimetry using the 267 nm line is demonstrated in a turbulent argon pipe flow and the Taylor microscale of the flow is determined.

14.
J Neurosci ; 36(46): 11619-11633, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852771

RESUMO

Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl- regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges. SIGNIFICANCE STATEMENT: Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory reversal potentials, is regulated together with extracellular potassium via kation chloride cotransporters. During temporal lobe epilepsy, the homeostatic regulation of intracellular chloride is impaired in pyramidal cells, yet how this dysregulation may lead to seizures has not been explored. Using a realistic neural network model describing ion mechanisms, we show that chloride homeostasis pathology provokes seizure activity analogous to recordings from epileptogenic brain tissue. We show that there is a critical percentage of pathological cells required for seizure initiation. Our model predicts that restoration of the chloride homeostasis in pyramidal cells could be a viable antiepileptic strategy.


Assuntos
Relógios Biológicos , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Simportadores/metabolismo , Animais , Ondas Encefálicas , Simulação por Computador , Humanos , Ativação do Canal Iônico , Cotransportadores de K e Cl-
15.
Epilepsia ; 58(8): 1473-1485, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28656696

RESUMO

OBJECTIVE: The reasons for failure of surgical treatment for mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) remain unclear. This retrospective study analyzed seizure, cognitive, and psychiatric outcomes, searching for factors associated with seizure relapse or cognitive and psychiatric deterioration after MTLE-HS surgery. METHODS: Seizure, cognitive, and psychiatric outcomes were reviewed after 389 surgeries performed between 1990 and 2015 on patients aged 15-67 years at a tertiary center. Three surgical approaches were used: anterior temporal lobectomy (ATL; n = 209), transcortical selective amygdalohippocampectomy (SAH; n = 144), and transsylvian SAH (n = 36). RESULTS: With an average follow-up of 8.7 years (range = 1.0-25.2), seizure outcome was classified as Engel I in 83.7% and Engel Ia in 57.1% of patients. The histological classification of HS was type 1 for 75.3% of patients, type 2 for 18.7%, and type 3 for 1.2%. Two factors were significantly associated with seizure recurrence: past history of status epilepticus and preoperative intracranial electroencephalographic recording. In contrast, neither HS type, the presence of a dual pathology, nor surgical approach was associated with seizure outcome. Risk of cognitive impairment was 3.12 (95% confidence interval = 1.27-7.70), greater in patients after ATL than in patients after transcortical SAH. A presurgical psychiatric history and postoperative cognitive impairment were associated with poor psychiatric outcome. SIGNIFICANCE: The SAH and ATL approaches have similar beneficial effects on seizure control, whereas transcortical SAH tends to minimize cognitive deterioration after surgery. Variation in postsurgical outcome with the class of HS should be investigated further.


Assuntos
Lobectomia Temporal Anterior/métodos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/patologia , Resultado do Tratamento , Adolescente , Adulto , Idoso , Transtornos Cognitivos/etiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Valor Preditivo dos Testes , Estudos Retrospectivos , Esclerose/etiologia , Adulto Jovem
16.
Appl Opt ; 56(31): 8632-8638, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091674

RESUMO

We report the use of femtosecond laser electronic excitation tagging (FLEET) for velocimetry at a 100-kHz imaging rate. Sequential, single-shot, quantitative velocity profiles of an underexpanded supersonic nitrogen jet were captured at a 100-kHz rate. The signal and lifetime characteristics of the FLEET emission were investigated in a methane flame above a Hencken burner at varying equivalence ratios, and room temperature gas mixtures involving air, methane, and nitrogen. In the post-flame region of the Hencken burner, the emission lifetime was measured as two orders of magnitude lower than lab air conditions. Increasing the equivalence ratio above 1.1 leads to a change in behavior, with a doubled lifetime. By measuring the emission in a cold methane flow, a short-lived signal was measured that decayed after the first microsecond. As a proof of concept for velocimetry in a reacting environment, the exhaust of a pulsed detonator was measured by FLEET. Quantitative velocity information was obtained that corresponded to a maximum centerline velocity of 1800 m/s for the detonation wave. Extension of FLEET to larger scale, complex flow environments is now a viable option.

17.
J Neurosci ; 35(40): 13542-54, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446209

RESUMO

An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca(2+) entry through Ca(2+)-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability.We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT: In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic interneurons are hyperpolarized, depends on Ca(2+) entry through Ca(2+)-permeable AMPA receptors, and has been labeled anti-Hebbian LTP. Here we show that this form of LTP also depends on activation of both group I mGluR and M1 mAChRs. We demonstrate that these G-protein coupled receptors (GPCRs) interact, because the blockade of one receptor suppresses long-term effects of activation of the other GPCR on both LTP and interneuron membrane potential. This LTP was also detected in paired recordings, although only when both presynaptic and postsynaptic recordings did not perturb the intracellular medium. Changes in EPSP amplitude distributions in dual recordings were consistent with a presynaptic locus of expression.


Assuntos
Região CA1 Hipocampal/citologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Receptor Muscarínico M1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Colinérgicos/farmacologia , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Rede Nervosa/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
18.
J Physiol ; 594(10): 2565-77, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26728572

RESUMO

KEY POINTS: The CA3 hippocampal region generates sharp waves (SPW), a population activity associated with neuronal representations. The synaptic mechanisms responsible for the generation of these events still require clarification. Using slices maintained in an interface chamber, we found that the firing of single CA3 pyramidal cells triggers SPW like events at short latencies, similar to those for the induction of firing in interneurons. Multi-electrode records from the CA3 stratum pyramidale showed that pyramidal cells triggered events consisting of putative interneuron spikes followed by field IPSPs. SPW fields consisted of a repetition of these events at intervals of 4-8 ms. Although many properties of induced and spontaneous SPWs were similar, the triggered events tended to be initiated close to the stimulated cell. These data show that the initiation of SPWs in vitro is mediated via pyramidal cell synapses that excite interneurons. They do not indicate why interneuron firing is repeated during a SPW. ABSTRACT: Sharp waves (SPWs) are a hippocampal population activity that has been linked to neuronal representations. We show that SPWs in the CA3 region of rat hippocampal slices can be triggered by the firing of single pyramidal cells. Single action potentials in almost one-third of pyramidal cells initiated SPWs at latencies of 2-5 ms with probabilities of 0.07-0.76. Initiating pyramidal cells evoked field IPSPs (fIPSPs) at similar latencies when SPWs were not initiated. Similar spatial profiles for fIPSPs and middle components of SPWs suggested that SPW fields reflect repeated fIPSPs. Multiple extracellular records showed that the initiated SPWs tended to start near the stimulated pyramidal cell, whereas spontaneous SPWs could emerge at multiple sites. Single pyramidal cells could initiate two to six field IPSPs with distinct amplitude distributions, typically preceeded by a short-duration extracellular action potential. Comparison of these initiated fields with spontaneously occurring inhibitory field motifs allowed us to identify firing in different interneurones during the spread of SPWs. Propagation away from an initiating pyramidal cell was typically associated with the recruitment of interneurones and field IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by single cells were less variable than spontaneous events, suggesting that more stereotyped neuronal ensembles were activated, although neither the spatial profiles of fields, nor the identities of interneurone firing were identical for initiated events. The effects of single pyramidal cell on network events are thus mediated by different sequences of interneurone firing.


Assuntos
Potenciais de Ação/fisiologia , Região CA3 Hipocampal/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Células Piramidais/efeitos dos fármacos , Ratos
19.
Neurobiol Dis ; 89: 180-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873552

RESUMO

DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.


Assuntos
Córtex Cerebral/anormalidades , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Geneticamente Modificados , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Neurônios/patologia , Neurônios/fisiologia , Fosforilação , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Ann Neurol ; 77(2): 281-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448920

RESUMO

OBJECTIVE: Transient high-frequency oscillations (HFOs; 150-600Hz) in local field potentials generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of HFOs have been controversial. This lack of agreement is clinically significant, because HFOs may be good markers of epileptogenic areas. Better defining the neuronal correlate of specific HFO frequency bands could improve electroencephalographic analyses made before epilepsy surgery. METHODS: Here, we recorded HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. With combined intra- or juxtacellular and extracellular recordings, we examined the cellular correlates of interictal and ictal HFO events. RESULTS: HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IIDs) and also during pharmacologically induced preictal discharges (PIDs) preceding ictal-like events. Many of these events included frequencies >250Hz and so might be considered pathological, but a significant proportion were spectrally similar to physiological ripples (150-250Hz). We found that IID ripples were associated with rhythmic γ-aminobutyric acidergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most pyramidal cells. INTERPRETATION: Our data suggest that IID and PID ripple-like oscillations (150-250Hz) in human epileptic hippocampus are associated with 2 distinct population activities that rely on different cellular and synaptic mechanisms. Thus, the ripple band could not help to disambiguate the underlying cellular processes.


Assuntos
Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Potenciais da Membrana/fisiologia , Adolescente , Adulto , Epilepsia/cirurgia , Feminino , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA