Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 656, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253577

RESUMO

The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks. Reservoir computing is a versatile paradigm that uses high-dimensional, nonlinear dynamical systems to perform computations and approximate cognitive functions. Here we present conn2res: an open-source Python toolbox for implementing biological neural networks as artificial neural networks. conn2res is modular, allowing arbitrary network architecture and dynamics to be imposed. The toolbox allows researchers to input connectomes reconstructed using multiple techniques, from tract tracing to noninvasive diffusion imaging, and to impose multiple dynamical systems, from spiking neurons to memristive dynamics. The versatility of the conn2res toolbox allows us to ask new questions at the confluence of neuroscience and artificial intelligence. By reconceptualizing function as computation, conn2res sets the stage for a more mechanistic understanding of structure-function relationships in brain networks.


Assuntos
Inteligência Artificial , Conectoma , Adaptação Psicológica , Encéfalo/diagnóstico por imagem , Cognição
2.
Netw Neurosci ; 7(3): 1051-1079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781139

RESUMO

Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.

3.
Nat Commun ; 14(1): 4197, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452058

RESUMO

Neuroscientific studies exploring real-world dynamic perception often overlook the influence of continuous changes in narrative content. In our research, we utilize machine learning tools for natural language processing to examine the relationship between movie narratives and neural responses. By analyzing over 50,000 brain images of participants watching Forrest Gump from the studyforrest dataset, we find distinct brain states that capture unique semantic aspects of the unfolding story. The default network, associated with semantic information integration, is the most engaged during movie watching. Furthermore, we identify two mechanisms that underlie how the default network liaises with the amygdala and hippocampus. Our findings demonstrate effective approaches to understanding neural processes in everyday situations and their relation to conscious awareness.


Assuntos
Mapeamento Encefálico , Filmes Cinematográficos , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Estado de Consciência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA