Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(15): 8382-8390, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32238562

RESUMO

The human capacity to compute the likelihood that a decision is correct-known as metacognition-has proven difficult to study in isolation as it usually cooccurs with decision making. Here, we isolated postdecisional from decisional contributions to metacognition by analyzing neural correlates of confidence with multimodal imaging. Healthy volunteers reported their confidence in the accuracy of decisions they made or decisions they observed. We found better metacognitive performance for committed vs. observed decisions, indicating that committing to a decision may improve confidence. Relying on concurrent electroencephalography and hemodynamic recordings, we found a common correlate of confidence following committed and observed decisions in the inferior frontal gyrus and a dissociation in the anterior prefrontal cortex and anterior insula. We discuss these results in light of decisional and postdecisional accounts of confidence and propose a computational model of confidence in which metacognitive performance naturally improves when evidence accumulation is constrained upon committing a decision.


Assuntos
Julgamento , Córtex Pré-Frontal/fisiologia , Adulto , Tomada de Decisões , Eletroencefalografia , Feminino , Humanos , Masculino , Metacognição , Imagem Multimodal , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
2.
Mov Disord ; 37(9): 1798-1802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947366

RESUMO

Task-specificity in isolated focal dystonias is a powerful feature that may successfully be targeted with therapeutic brain-computer interfaces. While performing a symptomatic task, the patient actively modulates momentary brain activity (disorder signature) to match activity during an asymptomatic task (target signature), which is expected to translate into symptom reduction.


Assuntos
Interfaces Cérebro-Computador , Distúrbios Distônicos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/terapia , Humanos
3.
PLoS Biol ; 16(5): e2003787, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29746465

RESUMO

This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain-computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI-user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface-application, BCI output, and electroencephalography (EEG) neuroimaging-with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.


Assuntos
Interfaces Cérebro-Computador , Aprendizagem , Aprendizado de Máquina , Quadriplegia/reabilitação , Humanos
4.
Brain ; 142(8): 2182-2197, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257411

RESUMO

Upper limb motor deficits in severe stroke survivors often remain unresolved over extended time periods. Novel neurotechnologies have the potential to significantly support upper limb motor restoration in severely impaired stroke individuals. Here, we review recent controlled clinical studies and reviews focusing on the mechanisms of action and effectiveness of single and combined technology-aided interventions for upper limb motor rehabilitation after stroke, including robotics, muscular electrical stimulation, brain stimulation and brain computer/machine interfaces. We aim at identifying possible guidance for the optimal use of these new technologies to enhance upper limb motor recovery especially in severe chronic stroke patients. We found that the current literature does not provide enough evidence to support strict guidelines, because of the variability of the procedures for each intervention and of the heterogeneity of the stroke population. The present results confirm that neurotechnology-aided upper limb rehabilitation is promising for severe chronic stroke patients, but the combination of interventions often lacks understanding of single intervention mechanisms of action, which may not reflect the summation of single intervention's effectiveness. Stroke rehabilitation is a long and complex process, and one single intervention administrated in a short time interval cannot have a large impact for motor recovery, especially in severely impaired patients. To design personalized interventions combining or proposing different interventions in sequence, it is necessary to have an excellent understanding of the mechanisms determining the effectiveness of a single treatment in this heterogeneous population of stroke patients. We encourage the identification of objective biomarkers for stroke recovery for patients' stratification and to tailor treatments. Furthermore, the advantage of longitudinal personalized trial designs compared to classical double-blind placebo-controlled clinical trials as the basis for precise personalized stroke rehabilitation medicine is discussed. Finally, we also promote the necessary conceptual change from 'one-suits-all' treatments within in-patient clinical rehabilitation set-ups towards personalized home-based treatment strategies, by adopting novel technologies merging rehabilitation and motor assistance, including implantable ones.


Assuntos
Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Interfaces Cérebro-Computador , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Terapia por Exercício/instrumentação , Terapia por Exercício/métodos , Humanos , Robótica/instrumentação , Robótica/métodos
5.
Brain Topogr ; 33(1): 48-59, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31317285

RESUMO

Visual attention can be spatially oriented, even in the absence of saccadic eye-movements, to facilitate the processing of incoming visual information. One behavioral proxy for this so-called covert visuospatial attention (CVSA) is the validity effect (VE): the reduction in reaction time (RT) to visual stimuli at attended locations and the increase in RT to stimuli at unattended locations. At the electrophysiological level, one correlate of CVSA is the lateralization in the occipital [Formula: see text]-band oscillations, resulting from [Formula: see text]-power increases ipsilateral and decreases contralateral to the attended hemifield. While this [Formula: see text]-band lateralization has been considerably studied using electroencephalography (EEG) or magnetoencephalography (MEG), little is known about whether it can be trained to improve CVSA behaviorally. In this cross-over sham-controlled study we used continuous real-time feedback of the occipital [Formula: see text]-lateralization to modulate behavioral and electrophysiological markers of covert attention. Fourteen subjects performed a cued CVSA task, involving fast responses to covertly attended stimuli. During real-time feedback runs, trials extended in time if subjects reached states of high [Formula: see text]-lateralization. Crucially, the ongoing [Formula: see text]-lateralization was fed back to the subject by changing the color of the attended stimulus. We hypothesized that this ability to self-monitor lapses in CVSA and thus being able to refocus attention accordingly would lead to improved CVSA performance during subsequent testing. We probed the effect of the intervention by evaluating the pre-post changes in the VE and the [Formula: see text]-lateralization. Behaviorally, results showed a significant interaction between feedback (experimental-sham) and time (pre-post) for the validity effect, with an increase in performance only for the experimental condition. We did not find corresponding pre-post changes in the [Formula: see text]-lateralization. Our findings suggest that EEG-based real-time feedback is a promising tool to enhance the level of covert visuospatial attention, especially with respect to behavioral changes. This opens up the exploration of applications of the proposed training method for the cognitive rehabilitation of attentional disorders.


Assuntos
Atenção/fisiologia , Eletroencefalografia/métodos , Lateralidade Funcional/fisiologia , Adulto , Cognição , Sinais (Psicologia) , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Neurorretroalimentação , Tempo de Reação/fisiologia , Adulto Jovem
6.
Cereb Cortex ; 28(12): 4222-4233, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088345

RESUMO

Despite many behavioral and neuroimaging investigations, it remains unclear how the human cortex represents spectrotemporal sound features during auditory imagery, and how this representation compares to auditory perception. To assess this, we recorded electrocorticographic signals from an epileptic patient with proficient music ability in 2 conditions. First, the participant played 2 piano pieces on an electronic piano with the sound volume of the digital keyboard on. Second, the participant replayed the same piano pieces, but without auditory feedback, and the participant was asked to imagine hearing the music in his mind. In both conditions, the sound output of the keyboard was recorded, thus allowing precise time-locking between the neural activity and the spectrotemporal content of the music imagery. This novel task design provided a unique opportunity to apply receptive field modeling techniques to quantitatively study neural encoding during auditory mental imagery. In both conditions, we built encoding models to predict high gamma neural activity (70-150 Hz) from the spectrogram representation of the recorded sound. We found robust spectrotemporal receptive fields during auditory imagery with substantial, but not complete overlap in frequency tuning and cortical location compared to receptive fields measured during auditory perception.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Ritmo Gama , Imaginação/fisiologia , Música , Neurônios/fisiologia , Estimulação Acústica , Mapeamento Encefálico/métodos , Potenciais Evocados Auditivos , Retroalimentação Sensorial , Humanos
7.
Neuroimage ; 176: 268-276, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29689307

RESUMO

Motor imagery (MI) has been largely studied as a way to enhance motor learning and to restore motor functions. Although it is agreed that users should emphasize kinesthetic imagery during MI, recordings of MI brain patterns are not sufficiently reliable for many subjects. It has been suggested that the usage of somatosensory feedback would be more suitable than standardly used visual feedback to enhance MI brain patterns. However, somatosensory feedback should not interfere with the recorded MI brain pattern. In this study we propose a novel feedback modality to guide subjects during MI based on sensory threshold neuromuscular electrical stimulation (St-NMES). St-NMES depolarizes sensory and motor axons without eliciting any muscular contraction. We hypothesize that St-NMES does not induce detectable ERD brain patterns and fosters MI performance. Twelve novice subjects were included in a cross-over design study. We recorded their EEG, comparing St-NMES with visual feedback during MI or resting tasks. We found that St-NMES not only induced significantly larger desynchronization over sensorimotor areas (p<0.05) but also significantly enhanced MI brain connectivity patterns. Moreover, classification accuracy and stability were significantly higher with St-NMES. Importantly, St-NMES alone did not induce detectable artifacts, but rather the changes in the detected patterns were due to an increased MI performance. Our findings indicate that St-NMES is a promising feedback in order to foster MI performance and cold be used for BMI online applications.


Assuntos
Axônios/fisiologia , Estimulação Elétrica/métodos , Retroalimentação Sensorial/fisiologia , Imaginação/fisiologia , Cinestesia/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Limiar Sensorial/fisiologia , Adulto , Interfaces Cérebro-Computador , Sincronização Cortical/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Córtex Sensório-Motor/fisiologia
8.
Neuroimage ; 181: 635-644, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30056196

RESUMO

Hand grasping is a sophisticated motor task that has received much attention by the neuroscientific community, which demonstrated how grasping activates a network involving parietal, pre-motor and motor cortices using fMRI, ECoG, LFPs and spiking activity. Yet, there is a need for a more precise spatio-temporal analysis as it is still unclear how these brain activations over large cortical areas evolve at the sub-second level. In this study, we recorded ten human participants (1 female) performing visually-guided, self-paced reaching and grasping with precision or power grips. Following the results, we demonstrate the existence of neural correlates of grasping from broadband EEG in self-paced conditions and show how neural correlates of precision and power grasps differentially evolve as grasps unfold. 100 ms before the grasp is secured, bilateral parietal regions showed increasingly differential patterns. Afterwards, sustained differences between both grasps occurred over the bilateral motor and parietal regions, and medial pre-frontal cortex. Furthermore, these differences were sufficiently discriminable to allow single-trial decoding with 70% decoding performance. Functional connectivity revealed differences at the network level between grasps in fronto-parietal networks, in terms of upper-alpha cortical oscillatory power with a strong involvement of ipsilateral hemisphere. Our results supported the existence of fronto-parietal recurrent feedback loops, with stronger interactions for precision grips due to the finer motor control required for this grasping type.


Assuntos
Eletroencefalografia/métodos , Neuroimagem Funcional/métodos , Mãos/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Interfaces Cérebro-Computador , Eletromiografia/métodos , Eletroculografia/métodos , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Adulto Jovem
9.
Arch Phys Med Rehabil ; 98(8): 1628-1635.e2, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28499657

RESUMO

OBJECTIVE: To evaluate the effects of electrically assisted movement therapy (EAMT) in which patients use functional electrical stimulation, modulated by a custom device controlled through the patient's unaffected hand, to produce or assist task-specific upper limb movements, which enables them to engage in intensive goal-oriented training. DESIGN: Randomized, crossover, assessor-blinded, 5-week trial with follow-up at 18 weeks. SETTING: Rehabilitation university hospital. PARTICIPANTS: Patients with chronic, severe stroke (N=11; mean age, 47.9y) more than 6 months poststroke (mean time since event, 46.3mo). INTERVENTIONS: Both EAMT and the control intervention (dose-matched, goal-oriented standard care) consisted of 10 sessions of 90 minutes per day, 5 sessions per week, for 2 weeks. After the first 10 sessions, group allocation was crossed over, and patients received a 1-week therapy break before receiving the new treatment. MAIN OUTCOME MEASURES: Fugl-Meyer Motor Assessment for the Upper Extremity, Wolf Motor Function Test, spasticity, and 28-item Motor Activity Log. RESULTS: Forty-four individuals were recruited, of whom 11 were eligible and participated. Five patients received the experimental treatment before standard care, and 6 received standard care before the experimental treatment. EAMT produced higher improvements in the Fugl-Meyer scale than standard care (P<.05). Median improvements were 6.5 Fugl-Meyer points and 1 Fugl-Meyer point after the experimental treatment and standard care, respectively. The improvement was also significant in subjective reports of quality of movement and amount of use of the affected limb during activities of daily living (P<.05). CONCLUSIONS: EAMT produces a clinically important impairment reduction in stroke patients with chronic, severe upper limb paresis.


Assuntos
Terapia por Estimulação Elétrica/métodos , Próteses Neurais , Paresia/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior , Atividades Cotidianas , Adolescente , Adulto , Idoso , Doença Crônica , Estudos Cross-Over , Terapia por Estimulação Elétrica/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Método Simples-Cego , Reabilitação do Acidente Vascular Cerebral/instrumentação , Adulto Jovem
10.
J Neuroeng Rehabil ; 12: 1, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25557982

RESUMO

: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user.This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies.As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os--not as independent devices, but as actors within an ecosystem--is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers.Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use.The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.


Assuntos
Extremidade Inferior , Aparelhos Ortopédicos , Próteses e Implantes , Desenho de Prótese/métodos , Atividades Cotidianas , Eletromiografia , Marcha , Humanos , Locomoção
11.
PNAS Nexus ; 3(2): pgae076, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38426121

RESUMO

Subject training is crucial for acquiring brain-computer interface (BCI) control. Typically, this requires collecting user-specific calibration data due to high inter-subject neural variability that limits the usability of generic decoders. However, calibration is cumbersome and may produce inadequate data for building decoders, especially with naïve subjects. Here, we show that a decoder trained on the data of a single expert is readily transferrable to inexperienced users via domain adaptation techniques allowing calibration-free BCI training. We introduce two real-time frameworks, (i) Generic Recentering (GR) through unsupervised adaptation and (ii) Personally Assisted Recentering (PAR) that extends GR by employing supervised recalibration of the decoder parameters. We evaluated our frameworks on 18 healthy naïve subjects over five online sessions, who operated a customary synchronous bar task with continuous feedback and a more challenging car racing game with asynchronous control and discrete feedback. We show that along with improved task-oriented BCI performance in both tasks, our frameworks promoted subjects' ability to acquire individual BCI skills, as the initial neurophysiological control features of an expert subject evolved and became subject specific. Furthermore, those features were task-specific and were learned in parallel as participants practiced the two tasks in every session. Contrary to previous findings implying that supervised methods lead to improved online BCI control, we observed that longitudinal training coupled with unsupervised domain matching (GR) achieved similar performance to supervised recalibration (PAR). Therefore, our presented frameworks facilitate calibration-free BCIs and have immediate implications for broader populations-such as patients with neurological pathologies-who might struggle to provide suitable initial calibration data.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38843055

RESUMO

Visual imagery, or the mental simulation of visual information from memory, could serve as an effective control paradigm for a brain-computer interface (BCI) due to its ability to directly convey the user's intention with many natural ways of envisioning an intended action. However, multiple initial investigations into using visual imagery as a BCI control strategies have been unable to fully evaluate the capabilities of true spontaneous visual mental imagery. One major limitation in these prior works is that the target image is typically displayed immediately preceding the imagery period. This paradigm does not capture spontaneous mental imagery as would be necessary in an actual BCI application but something more akin to short-term retention in visual working memory. Results from the present study show that short-term visual imagery following the presentation of a specific target image provides a stronger, more easily classifiable neural signature in EEG than spontaneous visual imagery from long-term memory following an auditory cue for the image. We also show that short-term visual imagery and visual perception share commonalities in the most predictive electrodes and spectral features. However, visual imagery received greater influence from frontal electrodes whereas perception was mostly confined to occipital electrodes. This suggests that visual perception is primarily driven by sensory information whereas visual imagery has greater contributions from areas associated with memory and attention. This work provides the first direct comparison of short-term and long-term visual imagery tasks and provides greater insight into the feasibility of using visual imagery as a BCI control strategy.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Estudos de Viabilidade , Imaginação , Percepção Visual , Humanos , Imaginação/fisiologia , Eletroencefalografia/métodos , Masculino , Feminino , Percepção Visual/fisiologia , Adulto , Adulto Jovem , Memória de Curto Prazo/fisiologia , Estimulação Luminosa , Algoritmos , Sinais (Psicologia)
13.
Front Neurosci ; 18: 1271831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550567

RESUMO

Riemannian geometry-based classification (RGBC) gained popularity in the field of brain-computer interfaces (BCIs) lately, due to its ability to deal with non-stationarities arising in electroencephalography (EEG) data. Domain adaptation, however, is most often performed on sample covariance matrices (SCMs) obtained from EEG data, and thus might not fully account for components affecting covariance estimation itself, such as regional trends. Detrended cross-correlation analysis (DCCA) can be utilized to estimate the covariance structure of such signals, yet it is computationally expensive in its original form. A recently proposed online implementation of DCCA, however, allows for its fast computation and thus makes it possible to employ DCCA in real-time applications. In this study we propose to replace the SCM with the DCCA matrix as input to RGBC and assess its effect on offline and online BCI performance. First we evaluated the proposed decoding pipeline offline on previously recorded EEG data from 18 individuals performing left and right hand motor imagery (MI), and benchmarked it against vanilla RGBC and popular MI-detection approaches. Subsequently, we recruited eight participants (with previous BCI experience) who operated an MI-based BCI (MI-BCI) online using the DCCA-enhanced Riemannian decoder. Finally, we tested the proposed method on a public, multi-class MI-BCI dataset. During offline evaluations the DCCA-based decoder consistently and significantly outperformed the other approaches. Online evaluation confirmed that the DCCA matrix could be computed in real-time even for 22-channel EEG, as well as subjects could control the MI-BCI with high command delivery (normalized Cohen's κ: 0.7409 ± 0.1515) and sample-wise MI detection (normalized Cohen's κ: 0.5200 ± 0.1610). Post-hoc analysis indicated characteristic connectivity patterns under both MI conditions, with stronger connectivity in the hemisphere contralateral to the MI task. Additionally, fractal scaling exponent of neural activity was found increased in the contralateral compared to the ipsilateral motor cortices (C4 and C3 for left and right MI, respectively) in both classes. Combining DCCA with Riemannian geometry-based decoding yields a robust and effective decoder, that not only improves upon the SCM-based approach but can also provide relevant information on the neurophysiological processes behind MI.

14.
Sci Rep ; 13(1): 20163, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978205

RESUMO

During reaching actions, the human central nerve system (CNS) generates the trajectories that optimize effort and time. When there is an obstacle in the path, we make sure that our arm passes the obstacle with a sufficient margin. This comfort margin varies between individuals. When passing a fragile object, risk-averse individuals may adopt a larger margin by following the longer path than risk-prone people do. However, it is not known whether this variation is associated with a personalized cost function used for the individual optimal control policies and how it is represented in our brain activity. This study investigates whether such individual variations in evaluation criteria during reaching results from differentiated weighting given to energy minimization versus comfort, and monitors brain error-related potentials (ErrPs) evoked when subjects observe a robot moving dangerously close to a fragile object. Seventeen healthy participants monitored a robot performing safe, daring and unsafe trajectories around a wine glass. Each participant displayed distinct evaluation criteria on the energy efficiency and comfort of robot trajectories. The ErrP-BCI outputs successfully inferred such individual variation. This study suggests that ErrPs could be used in conjunction with an optimal control approach to identify the personalized cost used by CNS. It further opens new avenues for the use of brain-evoked potential to train assistive robotic devices through the use of neuroprosthetic interfaces.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Encéfalo , Algoritmos
15.
iScience ; 26(9): 107524, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636067

RESUMO

Error-related potentials (ErrPs) are a prominent electroencephalogram (EEG) correlate of performance monitoring, and so crucial for learning and adapting our behavior. It is poorly understood whether ErrPs encode further information beyond error awareness. We report an experiment with sixteen participants over three sessions in which occasional visual rotations of varying magnitude occurred during a cursor reaching task. We designed a brain-computer interface (BCI) to detect ErrPs that provided real-time feedback. The individual ErrP-BCI decoders exhibited good transfer across sessions and scalability over the magnitude of errors. A non-linear relationship between the ErrP-BCI output and the magnitude of errors predicts individual perceptual thresholds to detect errors. We also reveal theta-gamma oscillatory coupling that co-varied with the magnitude of the required adjustment. Our findings open new avenues to probe and extend current theories of performance monitoring by incorporating continuous human interaction tasks and analysis of the ErrP complex rather than individual peaks.

16.
PLoS One ; 18(5): e0282967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167243

RESUMO

The brain mechanism of embodiment in a virtual body has grown a scientific interest recently, with a particular focus on providing optimal virtual reality (VR) experiences. Disruptions from an embodied state to a less- or non-embodied state, denominated Breaks in Embodiment (BiE), are however rarely studied despite their importance for designing interactions in VR. Here we use electroencephalography (EEG) to monitor the brain's reaction to a BiE, and investigate how this reaction depends on previous embodiment conditions. The experimental protocol consisted of two sequential steps; an induction step where participants were either embodied or non-embodied in an avatar, and a monitoring step where, in some cases, participants saw the avatar's hand move while their hand remained still. Our results show the occurrence of error-related potentials linked to observation of the BiE event in the monitoring step. Importantly, this EEG signature shows amplified potentials following the non-embodied condition, which is indicative of an accumulation of errors across steps. These results provide neurophysiological indications on how progressive disruptions impact the expectation of embodiment for a virtual body.


Assuntos
Eletroencefalografia , Realidade Virtual , Humanos , Encéfalo , Mãos , Cabeça
17.
Neuroimage ; 60(4): 1959-69, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22342874

RESUMO

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador
18.
IEEE J Biomed Health Inform ; 26(9): 4751-4762, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759604

RESUMO

In search and rescue missions, drone operations are challenging and cognitively demanding. High levels of cognitive workload can affect rescuers' performance, leading to failure with catastrophic outcomes. To face this problem, we propose a machine learning algorithm for real-time cognitive workload monitoring to understand if a search and rescue operator has to be replaced or if more resources are required. Our multimodal cognitive workload monitoring model combines the information of 25 features extracted from physiological signals, such as respiration, electrocardiogram, photoplethysmogram, and skin temperature, acquired in a noninvasive way. To reduce both subject and day inter-variability of the signals, we explore different feature normalization techniques, and introduce a novel weighted-learning method based on support vector machines suitable for subject-specific optimizations. On an unseen test set acquired from 34 volunteers, our proposed subject-specific model is able to distinguish between low and high cognitive workloads with an average accuracy of 87.3% and 91.2% while controlling a drone simulator using both a traditional controller and a new-generation controller, respectively.


Assuntos
Dispositivos Aéreos não Tripulados , Carga de Trabalho , Algoritmos , Cognição/fisiologia , Humanos , Aprendizado de Máquina
19.
Biosens Bioelectron ; 218: 114756, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209529

RESUMO

To date, brain-computer interfaces (BCIs) have proved to play a key role in many medical applications, for example, the rehabilitation of stroke patients. For post-stroke rehabilitation, the BCIs require the EEG electrodes to precisely translate the brain signals of patients into intended movements of the paralyzed limb for months. However, the gold standard silver/silver-chloride electrodes cannot satisfy the requirements for long-term stability and preparation-free recording capability in wearable EEG devices, thus limiting the versatility of EEG in wearable BCI applications over time outside the rehabilitation center. Here, we design a long-term stable and low electrode-skin interfacial impedance conductive polymer-hydrogel EEG electrode that maintains a lower impedance value than gel-based electrodes for 29 days. With this technology, EEG-based long-term and wearable BCIs could be realized in the near future. To demonstrate this, our designed electrode is applied for a wireless single-channel EEG device that detects changes in alpha rhythms in eye-open/eye-close conditions. In addition, we validate that the designed electrodes could capture oscillatory rhythms in motor imagery protocols as well as low-frequency time-locked event-related potentials from healthy subjects, with similar or better performance than gel-based electrodes. Finally, we demonstrate the use of the designed electrode in online BCI-based functional electrical stimulation, which could be used for post-stroke rehabilitation.


Assuntos
Técnicas Biossensoriais , Interfaces Cérebro-Computador , Dispositivos Eletrônicos Vestíveis , Humanos , Prata , Impedância Elétrica , Cloretos , Eletrodos , Hidrogéis , Polímeros
20.
Front Hum Neurosci ; 16: 898300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937679

RESUMO

The brain-computer interface (BCI) has been investigated as a form of communication tool between the brain and external devices. BCIs have been extended beyond communication and control over the years. The 2020 international BCI competition aimed to provide high-quality neuroscientific data for open access that could be used to evaluate the current degree of technical advances in BCI. Although there are a variety of remaining challenges for future BCI advances, we discuss some of more recent application directions: (i) few-shot EEG learning, (ii) micro-sleep detection (iii) imagined speech decoding, (iv) cross-session classification, and (v) EEG(+ear-EEG) detection in an ambulatory environment. Not only did scientists from the BCI field compete, but scholars with a broad variety of backgrounds and nationalities participated in the competition to address these challenges. Each dataset was prepared and separated into three data that were released to the competitors in the form of training and validation sets followed by a test set. Remarkable BCI advances were identified through the 2020 competition and indicated some trends of interest to BCI researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA