Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Sel Evol ; 55(1): 3, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658485

RESUMO

BACKGROUND: Longitudinal records of temperament can be used for assessing behavioral plasticity, such as aptness to learn, memorize, or change behavioral responses based on affective state. In this study, we evaluated the phenotypic and genomic background of North American Angus cow temperament measured throughout their lifetime around the weaning season, including the development of a new indicator trait termed docility-based learning and behavioral plasticity. The analyses included 273,695 and 153,898 records for yearling (YT) and cow at weaning (CT) temperament, respectively, 723,248 animals in the pedigree, and 8784 genotyped animals. Both YT and CT were measured when the animal was loading into/exiting the chute. Moreover, CT was measured around the time in which the cow was separated from her calf. A random regression model fitting a first-order Legendre orthogonal polynomial was used to model the covariance structure of temperament and to assess the learning and behavioral plasticity (i.e., slope of the regression) of individual cows. This study provides, for the first time, a longitudinal perspective of the genetic and genomic mechanisms underlying temperament, learning, and behavioral plasticity in beef cattle. RESULTS: CT measured across years is heritable (0.38-0.53). Positive and strong genetic correlations (0.91-1.00) were observed among all CT age-group pairs and between CT and YT (0.84). Over 90% of the candidate genes identified overlapped among CT age-groups and the estimated effect of genomic markers located within important candidate genes changed over time. A small but significant genetic component was observed for learning and behavioral plasticity (heritability = 0.02 ± 0.002). Various candidate genes were identified, revealing the polygenic nature of the traits evaluated. The pathways and candidate genes identified are associated with steroid and glucocorticoid hormones, development delay, cognitive development, and behavioral changes in cattle and other species. CONCLUSIONS: Cow temperament is highly heritable and repeatable. The changes in temperament can be genetically improved by selecting animals with favorable learning and behavioral plasticity (i.e., habituation). Furthermore, the environment explains a large part of the variation in learning and behavioral plasticity, leading to opportunities to also improve the overall temperament by refining management practices. Moreover, behavioral plasticity offers opportunities to improve the long-term animal and handler welfare through habituation.


Assuntos
Genômica , Temperamento , Feminino , Bovinos/genética , Animais , Temperamento/fisiologia , Genótipo , Fenótipo , América do Norte
2.
Genet Sel Evol ; 55(1): 76, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919645

RESUMO

BACKGROUND: Hoof structure and health are essential for the welfare and productivity of beef cattle. Therefore, we assessed the genetic and genomic background of foot score traits in American (US) and Australian (AU) Angus cattle and investigated the feasibility of performing genomic evaluations combining data for foot score traits recorded in US and AU Angus cattle. The traits evaluated were foot angle (FA) and claw set (CS). In total, 109,294 and ~ 1.12 million animals had phenotypic and genomic information, respectively. Four sets of analyses were performed: (1) genomic connectedness between US and AU Angus cattle populations and population structure, (2) estimation of genetic parameters, (3) single-step genomic prediction of breeding values, and (4) single-step genome-wide association studies for FA and CS. RESULTS: There was no clear genetic differentiation between US and AU Angus populations. Similar heritability estimates (FA: 0.22-0.24 and CS: 0.22-0.27) and moderate-to-high genetic correlations between US and AU foot scores (FA: 0.61 and CS: 0.76) were obtained. A joint-genomic prediction using data from both populations outperformed within-country genomic evaluations. A genomic prediction model considering US and AU datasets as a single population performed similarly to the scenario accounting for genotype-by-environment interactions (i.e., multiple-trait model considering US and AU records as different traits), even though the genetic correlations between countries were lower than 0.80. Common significant genomic regions were observed between US and AU for FA and CS. Significant single nucleotide polymorphisms were identified on the Bos taurus (BTA) chromosomes BTA1, BTA5, BTA11, BTA13, BTA19, BTA20, and BTA23. The candidate genes identified were primarily from growth factor gene families, including FGF12 and GDF5, which were previously associated with bone structure and repair. CONCLUSIONS: This study presents comprehensive population structure and genetic and genomic analyses of foot scores in US and AU Angus cattle populations, which are essential for optimizing the implementation of genomic selection for improved foot scores in Angus cattle breeding programs. We have also identified candidate genes associated with foot scores in the largest Angus cattle populations in the world and made recommendations for genomic evaluations for improved foot score traits in the US and AU.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Animais , Estudo de Associação Genômica Ampla/veterinária , Austrália , Fenótipo , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
3.
Genet Sel Evol ; 52(1): 63, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087048

RESUMO

BACKGROUND: Heat stress and fescue toxicosis caused by ingesting tall fescue infected with the endophytic fungus Epichloë coenophiala represent two of the most prevalent stressors to beef cattle in the United States and cost the beef industry millions of dollars each year. The rate at which a beef cow sheds her winter coat early in the summer is an indicator of adaptation to heat and an economically relevant trait in temperate or subtropical parts of the world. Furthermore, research suggests that early-summer hair shedding may reflect tolerance to fescue toxicosis, since vasoconstriction induced by fescue toxicosis limits the ability of an animal to shed its winter coat. Both heat stress and fescue toxicosis reduce profitability partly via indirect maternal effects on calf weaning weight. Here, we developed parameters for routine genetic evaluation of hair shedding score in American Angus cattle, and identified genomic loci associated with variation in hair shedding score via genome-wide association analysis (GWAA). RESULTS: Hair shedding score was moderately heritable (h2 = 0.34 to 0.40), with different repeatability estimates between cattle grazing versus not grazing endophyte-infected tall fescue. Our results suggest modestly negative genetic and phenotypic correlations between a dam's hair shedding score (lower score is earlier shedding) and the weaning weight of her calf, which is one metric of performance. Together, these results indicate that economic gains can be made by using hair shedding score breeding values to select for heat-tolerant cattle. GWAA identified 176 variants significant at FDR < 0.05. Functional enrichment analyses using genes that were located within 50 kb of these variants identified pathways involved in keratin formation, prolactin signalling, host-virus interaction, and other biological processes. CONCLUSIONS: This work contributes to a continuing trend in the development of genetic evaluations for environmental adaptation. Our results will aid beef cattle producers in selecting more sustainable and climate-adapted cattle, as well as enable the development of similar routine genetic evaluations in other breeds.


Assuntos
Pelo Animal/fisiologia , Cruzamento/métodos , Bovinos/genética , Característica Quantitativa Herdável , Termotolerância/genética , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/fisiopatologia , Suscetibilidade a Doenças , Epichloe , Queratinas/genética , Queratinas/metabolismo , Micotoxicose/genética , Micotoxicose/fisiopatologia , Micotoxicose/veterinária , Polimorfismo de Nucleotídeo Único , Prolactina/genética , Prolactina/metabolismo , Desmame
5.
BMC Genomics ; 18(1): 632, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821223

RESUMO

BACKGROUND: Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. RESULTS: While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. CONCLUSIONS: Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.


Assuntos
Feto/metabolismo , Perfilação da Expressão Gênica , Fenômenos Fisiológicos da Nutrição Materna , Músculos/embriologia , Músculos/metabolismo , Carne Vermelha , Animais , Bovinos , Metilação de DNA , Feminino , Fenótipo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
BMC Genet ; 18(1): 25, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288558

RESUMO

BACKGROUND: Knowledge about the genetic diversity of a population is a crucial parameter for the implementation of successful genomic selection and conservation of genetic resources. The aim of this research was to establish the scientific basis for the implementation of genomic selection in a composite Terminal sheep breeding scheme by providing consolidated linkage disequilibrium (LD) measures across SNP markers, estimating consistency of gametic phase between breed-groups, and assessing genetic diversity measures, such as effective population size (Ne), and population structure parameters, using a large number of animals (n = 14,845) genotyped with a high density SNP chip (606,006 markers). Information generated in this research will be useful for optimizing molecular breeding values predictions and managing the available genetic resources. RESULTS: Overall, as expected, levels of pairwise LD decreased with increasing distance between SNP pairs. The mean LD r2 between adjacent SNP was 0.26 ± 0.10. The most recent effective population size for all animals (687) and separately per breed-groups: Primera (974), Lamb Supreme (380), Texel (227) and Dual-Purpose (125) was quite variable. The genotyped animals were outbred or had an average low level of inbreeding. Consistency of gametic phase was higher than 0.94 for all breed pairs at the average distance between SNP on the chip (~4.74 kb). Moreover, there was not a clear separation between the breed-groups based on principal component analysis, suggesting that a mixed-breed training population for calculation of molecular breeding values would be beneficial. CONCLUSIONS: This study reports, for the first time, estimates of linkage disequilibrium, genetic diversity and population structure parameters from a genome-wide perspective in New Zealand Terminal Sire composite sheep breeds. The levels of linkage disequilibrium indicate that genomic selection could be implemented with the high density SNP panel. The moderate to high consistency of gametic phase between breed-groups and overlapping population structure support the pooling of the animals in a mixed training population for genomic predictions. In addition, the moderate to high Ne highlights the need to genotype and phenotype a large training population in order to capture most of the haplotype diversity and increase accuracies of genomic predictions. The results reported herein are a first step toward understanding the genomic architecture of a Terminal Sire composite sheep population and for the optimal implementation of genomic selection and genome-wide association studies in this sheep population.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Feminino , Marcadores Genéticos/genética , Genótipo , Desequilíbrio de Ligação , Masculino , Densidade Demográfica
7.
BMC Genet ; 18(1): 7, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28122512

RESUMO

BACKGROUND: New Zealand has some unique Terminal Sire composite sheep breeds, which were developed in the last three decades to meet commercial needs. These composite breeds were developed based on crossing various Terminal Sire and Maternal breeds and, therefore, present high genetic diversity compared to other sheep breeds. Their breeding programs are focused on improving carcass and meat quality traits. There is an interest from the industry to implement genomic selection in this population to increase the rates of genetic gain. Therefore, the main objectives of this study were to determine the accuracy of predicted genomic breeding values for various growth, carcass and meat quality traits using a HD SNP chip and to evaluate alternative genomic relationship matrices, validation designs and genomic prediction scenarios. A large multi-breed population (n = 14,845) was genotyped with the HD SNP chip (600 K) and phenotypes were collected for a variety of traits. RESULTS: The average observed accuracies (± SD) for traits measured in the live animal, carcass, and, meat quality traits ranged from 0.18 ± 0.07 to 0.33 ± 0.10, 0.28 ± 0.09 to 0.55 ± 0.05 and 0.21 ± 0.07 to 0.36 ± 0.08, respectively, depending on the scenario/method used in the genomic predictions. When accounting for population stratification by adjusting for 2, 4 or 6 principal components (PCs) the observed accuracies of molecular breeding values (mBVs) decreased or kept constant for all traits. The mBVs observed accuracies when fitting both G and A matrices were similar to fitting only G matrix. The lowest accuracies were observed for k-means cross-validation and forward validation performed within each k-means cluster. CONCLUSIONS: The accuracies observed in this study support the feasibility of genomic selection for growth, carcass and meat quality traits in New Zealand Terminal Sire breeds using the Ovine HD SNP chip. There was a clear advantage on using a mixed training population instead of performing analyzes per genomic clusters. In order to perform genomic predictions per breed group, genotyping more animals is recommended to increase the size of the training population within each group and the genetic relationship between training and validation populations. The different scenarios evaluated in this study will help geneticists and breeders to make wiser decisions in their breeding programs.


Assuntos
Cruzamento , Genômica , Carne , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ovinos/crescimento & desenvolvimento , Ovinos/genética , Animais , Feminino , Genótipo , Masculino
8.
Genet Sel Evol ; 49(1): 82, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115939

RESUMO

BACKGROUND: Our aim was to identify genomic regions via genome-wide association studies (GWAS) to improve the predictability of genetic merit in Holsteins for 10 calving and 28 body conformation traits. Animals were genotyped using the Illumina Bovine 50 K BeadChip and imputed to the Illumina BovineHD BeadChip (HD). GWAS were performed on 601,717 real and imputed single nucleotide polymorphism (SNP) genotypes using a single-SNP mixed linear model on 4841 Holstein bulls with breeding value predictions and followed by gene identification and in silico functional analyses. The association results were further validated using five scenarios with different numbers of SNPs. RESULTS: Seven hundred and eighty-two SNPs were significantly associated with calving performance at a genome-wise false discovery rate (FDR) of 5%. Most of these significant SNPs were on chromosomes 18 (71.9%), 17 (7.4%), 5 (6.8%) and 7 (2.4%) and mapped to 675 genes, among which 142 included at least one significant SNP and 532 were nearby one (100 kbp). For body conformation traits, 607 SNPs were significant at a genome-wise FDR of 5% and most of them were located on chromosomes 5 (30%), 18 (27%), 20 (13%), 6 (6%), 7 (5%), 14 (5%) and 13 (3%). SNP enrichment functional analyses for calving traits at a FDR of 1% suggested potential biological processes including musculoskeletal movement, meiotic cell cycle, oocyte maturation and skeletal muscle contraction. Furthermore, pathway analyses suggested potential pathways associated with calving performance traits including tight junction, oxytocin signaling, and MAPK signaling (P < 0.10). The prediction ability of the 1206 significant SNPs was between 78 and 83% of the prediction ability of the BovineSNP50 SNPs for calving performance traits and between 35 and 79% for body conformation traits. CONCLUSIONS: Various SNPs that are significantly associated with calving performance are located within or nearby genes with potential roles in tight junction, oxytocin signaling, and MAPK signaling. Combining the significant SNPs or SNPs within or nearby gene(s) from the HD panel with the BovineSNP50 panel yielded a marginal increase in the accuracy of prediction of genomic estimated breeding values for all traits compared to the use of the BovineSNP50 panel alone.


Assuntos
Composição Corporal/genética , Bovinos/genética , Fertilidade/genética , Viabilidade Fetal/genética , Estudo de Associação Genômica Ampla/métodos , Seleção Artificial , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Cromossomos/genética , Feminino , Estudo de Associação Genômica Ampla/normas , Sistema de Sinalização das MAP Quinases/genética , Masculino , Redes e Vias Metabólicas/genética , Ocitocina/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Junções Íntimas/genética
9.
BMC Genet ; 17(1): 75, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287773

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions explaining variation in phenotype. The objectives of the present study were to identify or refine the positions of genomic regions affecting milk production, milk components and fertility traits in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may influence these traits. RESULT: Several QTL regions were detected for milk production (MILK), fat production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD respectively). The identified QTL regions for production traits (including milk production) support previous findings and some overlap with genes with known relevant biological functions identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first service interval and days open. A functional enrichment analysis of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of potassium ion transport) for days open (DO). In other cases the connection between the enriched GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) for DO trait. CONCLUSION: The chromosomal regions and enriched pathways identified in this study confirm several previous findings and highlight new regions and pathways that may contribute to variation in production or fertility traits in dairy cattle.


Assuntos
Indústria de Laticínios , Fertilidade/genética , Estudo de Associação Genômica Ampla , Leite/metabolismo , Tecido Adiposo/citologia , Animais , Bovinos , Feminino , Polimorfismo de Nucleotídeo Único
11.
Genet Sel Evol ; 48(1): 71, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27663120

RESUMO

BACKGROUND: Genotype imputation is a key element of the implementation of genomic selection within the New Zealand sheep industry, but many factors can influence imputation accuracy. Our objective was to provide practical directions on the implementation of imputation strategies in a multi-breed sheep population genotyped with three single nucleotide polymorphism (SNP) panels: 5K, 50K and HD (600K SNPs). RESULTS: Imputation from 5K to HD was slightly better (0.6 %) than imputation from 5K to 50K. Two-step imputation from 5K to 50K and then from 50K to HD outperformed direct imputation from 5K to HD. A slight loss in imputation accuracy was observed when a large fixed reference population was used compared to a smaller within-breed reference (including all 50K genotypes on animals from different breeds excluding those in the validation set i.e. to be imputed), but only for a few animals across all imputation scenarios from 5K to 50K. However, a major gain in imputation accuracy for a large proportion of animals (purebred and crossbred), justified the use of a fixed and large reference dataset for all situations. This study also investigated the loss in imputation accuracy specifically for SNPs located at the ends of each chromosome, and showed that only chromosome 26 had an overall imputation (5K to 50K) accuracy for 100 SNPs at each end higher than 60 % (r2). Most of the chromosomes displayed reduced imputation accuracy at least at one of their ends. Prediction of imputation accuracy based on the relatedness of low-density genotypes to those of the reference dataset, before imputation (without running an imputation software) was also investigated. FIMPUTE V2.2 outperformed BEAGLE 3.3.2 across all imputation scenarios. CONCLUSIONS: Imputation accuracy in sheep breeds can be improved by following a set of recommendations on SNP panels, software, strategies of imputation (one- or two-step imputation), and choice of the animals to be genotyped using both high- and low-density SNP panels. We present a method that predicts imputation accuracy for individual animals at the low-density level, before running imputation, which can be used to restrict genomic prediction only to the animals that can be imputed with sufficient accuracy.

12.
Genome ; 58(12): 549-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484575

RESUMO

The aim of this study was to identify SNP markers that associate with variation in beef heifer reproduction and performance of their calves. A genome-wide association study was performed by means of the generalized quasi-likelihood score (GQLS) method using heifer genotypes from the BovineSNP50 BeadChip and estimated breeding values for pre-breeding body weight (PBW), pregnancy rate (PR), calving difficulty (CD), age at first calving (AFC), calf birth weight (BWT), calf weaning weight (WWT), and calf pre-weaning average daily gain (ADG). Data consisted of 785 replacement heifers from three Canadian research herds, namely Brandon Research Centre, Brandon, Manitoba, University of Alberta Roy Berg Kinsella Ranch, Kinsella, Alberta, and Lacombe Research Centre, Lacombe, Alberta. After applying a false discovery rate correction at a 5% significance level, a total of 4, 3, 3, 9, 6, 2, and 1 SNPs were significantly associated with PBW, PR, CD, AFC, BWT, WWT, and ADG, respectively. These SNPs were located on chromosomes 1, 5-7, 9, 13-16, 19-21, 24, 25, and 27-29. Chromosomes 1, 5, and 24 had SNPs with pleiotropic effects. New significant SNPs that impact functional traits were detected, many of which have not been previously reported. The results of this study support quantitative genetic studies related to the inheritance of these traits, and provides new knowledge regarding beef cattle quantitative trait loci effects. The identification of these SNPs provides a starting point to identify genes affecting heifer reproduction traits and performance of their calves (BWT, WWT, and ADG). They also contribute to a better understanding of the biology underlying these traits and will be potentially useful in marker- and genome-assisted selection and management.


Assuntos
Estudo de Associação Genômica Ampla , Característica Quantitativa Herdável , Carne Vermelha/normas , Reprodução/genética , Alelos , Animais , Peso ao Nascer , Peso Corporal , Cruzamento , Bovinos , Feminino , Estudos de Associação Genética , Genética Populacional , Genótipo , Padrões de Herança , Masculino , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Gravidez , Taxa de Gravidez , Locos de Características Quantitativas
13.
Chembiochem ; 15(8): 1145-53, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24797066

RESUMO

An active site lysine essential to catalysis in isocitrate dehydrogenase (IDH) is absent from related enzymes. As all family members catalyze the same oxidative ß-decarboxylation at the (2R)-malate core common to their substrates, it seems odd that an amino acid essential to one is not found in all. Ordinarily, hydride transfer to a nicotinamide C4 neutralizes the positive charge at N1 directly. In IDH, the negatively charged C4-carboxylate of isocitrate stabilizes the ground state positive charge on the adjacent nicotinamide N1, opposing hydride transfer. The critical lysine is poised to stabilize-and perhaps even protonate-an oxyanion formed on the nicotinamide 3-carboxamide, thereby enabling the hydride to be transferred while the positive charge at N1 is maintained. IDH might catalyze the same overall reaction as other family members, but dehydrogenation proceeds through a distinct, though related, transition state. Partial activation of lysine mutants by K(+) and NH4 (+) represents a throwback to the primordial state of the first promiscuous substrate family member.


Assuntos
Escherichia coli/enzimologia , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Lisina/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/isolamento & purificação , Cinética , Lisina/genética , Modelos Moleculares , Estrutura Molecular
14.
BMC Genet ; 15: 14, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24476087

RESUMO

BACKGROUND: This study was conducted to: (1) identify new SNPs for residual feed intake (RFI) and performance traits within candidate genes identified in a genome wide association study (GWAS); (2) estimate the proportion of variation in RFI explained by the detected SNPs; (3) estimate the effects of detected SNPs on carcass traits to avoid undesirable correlated effects on these economically important traits when selecting for feed efficiency; and (4) map the genes to biological mechanisms and pathways. A total number of 339 SNPs corresponding to 180 genes were tested for association with phenotypes using a single locus regression (SLRM) and genotypic model on 726 and 990 crossbred animals for feed efficiency and carcass traits, respectively. RESULTS: Strong evidence of associations for RFI were located on chromosomes 8, 15, 16, 18, 19, 21, and 28. The strongest association with RFI (P = 0.0017) was found with a newly discovered SNP located on BTA 8 within the ELP3 gene. SNPs rs41820824 and rs41821600 on BTA 16 within the gene HMCN1 were strongly associated with RFI (P = 0.0064 and P = 0.0033, respectively). A SNP located on BTA 18 within the ZNF423 gene provided strong evidence for association with RFI (P = 0.0028). Genomic estimated breeding values (GEBV) from 98 significant SNPs were moderately correlated (0.47) to the estimated breeding values (EBVs) from a mixed animal model. The significant (P < 0.05) SNPs (98) explained 26% of the genetic variance for RFI. In silico functional analysis for the genes suggested 35 and 39 biological processes and pathways, respectively for feed efficiency traits. CONCLUSIONS: This study identified several positional and functional candidate genes involved in important biological mechanisms associated with feed efficiency and performance. Significant SNPs should be validated in other populations to establish their potential utilization in genetic improvement programs.


Assuntos
Bovinos/genética , Ingestão de Alimentos/genética , Polimorfismo de Nucleotídeo Único , Ração Animal , Animais , Peso Corporal , Cruzamento , Mapeamento Cromossômico , Estudos de Associação Genética , Modelos Genéticos , Fenótipo , Característica Quantitativa Herdável , Análise de Regressão
15.
Br J Nutr ; 111(1): 101-10, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23803219

RESUMO

The impact of immune system stimulation (ISS) on the ileal nutrient digestibility and utilisation of dietary methionine plus cysteine (SAA) intake for whole-body protein deposition (PD) was evaluated in growing pigs. For this purpose, sixty barrows were used in two experiments: thirty-six pigs in Expt I and twenty-four pigs in Expt II. Pigs were feed restricted and assigned to five levels of dietary SAA allowance (three and two levels in Expt I and II, respectively) from SAA-limiting diets. Following adaptation, pigs at each dietary SAA level were injected with either increasing amounts of Escherichia coli lipopolysaccharide (ISS+; eight and six pigs per dietary SAA level in Expt I and II, respectively) or saline (ISS - ; four and six pigs in Expt I and II, respectively) while measuring the whole-body nitrogen (N) balance. After N-balance observations, pigs were euthanised, organs were removed and ileal digesta were collected for determining nutrient digestibility. Ileal digestibility of gross energy, crude protein and amino acids was not affected by ISS (P>0·20). ISS reduced PD at all levels of dietary SAA intake (P< 0·01). The linear relationship between daily dietary SAA intake and PD observed at the three lowest dietary SAA intake levels indicated that ISS increased extrapolated maintenance SAA requirements (P< 0·05), but had no effect on the partial efficiency of the utilisation of dietary SAA intake for PD (P>0·20). Physiological and metabolic changes associated with systemic ISS had no effect on the ileal digestibility of nutrients per se, but altered SAA requirements for PD in growing pigs.


Assuntos
Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Digestão/imunologia , Escherichia coli , Íleo/metabolismo , Proteínas/metabolismo , Animais , Cisteína/metabolismo , Ingestão de Energia , Íleo/crescimento & desenvolvimento , Íleo/imunologia , Íleo/microbiologia , Lipopolissacarídeos , Masculino , Metionina/metabolismo , Suínos
16.
Genome ; 56(10): 586-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24237339

RESUMO

This study reports a genome wide scan for chromosome regions and their haplotypes that significantly associated with average daily gain (ADG), dry matter intake (DMI), and residual feed intake (RFI) in beef cattle. The study used data from 597 Angus, 450 Charolais, and 616 crossbred beef cattle, and the Illumina Bovine SNP50 beadchip. Extended haplotype homozygosity was used to identify chromosome regions that had been recently selected for in the three groups of animals. Such regions in the crossbreds were tested for association with ADG, DMI, and RFI. At false discovery rates of 5% and 10%, there were six and eight chromosome regions showing significant associations with the traits, respectively. At nominal significance levels (at least P < 0.05), 23 regions with a total number of 31 haplotypes were found significantly associated with at least one of the three traits. The proportion of phenotypic variance explained by these 23 regions varied depending on the trait; the highest proportion for ADG, DMI, and RFI was 13.50%, 9.92%, and 2.64%, respectively. Most of the haplotypes affected single traits, except for GAA (BTA4), GCG (BTA7), and TAGT (BTA12) that affected multiple traits. Thirty-six quantitative trait loci for 16 production traits, from the current literature, covered fully or in part the 23 chromosome regions. The findings from this study might be an important contribution to the current knowledge of the beef cattle genome and to the effective identification of causative genes associated with important traits in cattle.


Assuntos
Ração Animal , Bovinos/genética , Cromossomos de Mamíferos , Estudos de Associação Genética , Haplótipos , Locos de Características Quantitativas , Aumento de Peso/genética , Animais , Ingestão de Alimentos , Variação Genética , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Genet Sel Evol ; 45: 26, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23865507

RESUMO

BACKGROUND: Since feed represents 70% of the total cost in poultry production systems, an animal's ability to convert feed is an important trait. In this study, residual feed intake (RFI) and residual body weight gain (RG), and their linear combination into residual feed intake and body weight gain (RIG) were studied to estimate their genetic parameters and analyze the potential differences in feed intake between the top ranked birds based on the criteria for each trait. METHODS: Phenotypic and genetic analyses were completed on 8340 growing tom turkeys that were measured for feed intake and body weight gain over a four-week period from 16 to 20 weeks of age. RESULTS: The heritabilities of RG and RIG were 0.19 ± 0.03 and 0.23 ± 0.03, respectively. Residual body weight gain had moderate genetic correlations with feed intake (-0.41) and body weight gain (0.43). All three linear combinations to form the RIG traits had genetic correlations ranging from -0.62 to -0.52 with feed intake, and slightly weaker, 0.22 to 0.34, with body weight gain. Sorted into three equal groups (low, medium, high) based on RG, the most efficient group (high) gained 0.62 and 1.70 kg more (P < 0.001) body weight than that of the medium and low groups, yet the feed intake for the high group was less (P < 0.05) than that of the medium group (19.52 vs. 19.75 kg). When separated into similar partitions, the high RIG group (most efficient) had both the lowest (P < 0.001) feed intake (18.86 vs. 19.57 and 20.41 kg) and the highest (P < 0.001) body weight gain (7.41 vs. 7.03 and 6.43 kg) relative to the medium and low groups, respectively. CONCLUSIONS: The difference in feed intake between the top ranked birds based on different residual feed efficiency traits may be small when looking at the average individual, however, when extrapolated to the production level, the lower feed intake values could lead to significant savings in feed costs over time.


Assuntos
Ração Animal , Peso Corporal/genética , Característica Quantitativa Herdável , Perus/crescimento & desenvolvimento , Perus/genética , Animais , Dieta , Estudos de Associação Genética , Masculino , Fenótipo , Fatores de Tempo
18.
Front Psychol ; 14: 1110282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397324

RESUMO

Effective next-generation leadership is central to the multi-generational survival of family businesses. This study of 100 next-generation family business leaders found that business-owning families that openly express their opinions, take time to listen to each other, and squarely address difficult issues positively influence the development of the emotional and social intelligence competencies in next-generation family leaders that drive their leadership effectiveness. That kind of open and transparent communication in the family also makes it more likely next-generation leaders will be held accountable for their leadership performance by others, which increases the degree to which they are positively engaged with their work in the family firm. On the other hand, the results suggest that senior-generation family leaders who lead autocratically, a leadership style often observed in entrepreneurs who found family firms, make it less likely that next-generation family leaders will learn the emotional and social intelligence competencies that predict their leadership effectiveness. The study also found that autocratic senior-generation leaders negatively affect next-generation leader self-efficacy and make it less likely that others will hold them accountable, which limits their engagement with work in the family business. One of the study's most important findings is that next-generation leader acceptance of personal responsibility for their leadership behaviors and results serves as a mediator through which the nature of the family climate influences their leadership effectiveness and work engagement. This suggests that while the nature of family relationships may make it easier or more difficult, next-generation family leaders have ultimate control over the development of their leadership talent and the inspiration, enthusiasm, energy, and pride they feel when working in the family business.

19.
Biochemistry ; 51(36): 7098-115, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891681

RESUMO

NADP(+) dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42) belongs to a large family of α-hydroxyacid oxidative ß-decarboxylases that catalyze similar three-step reactions, with dehydrogenation to an oxaloacid intermediate preceding ß-decarboxylation to an enol intermediate followed by tautomerization to the final α-ketone product. A comprehensive view of the induced fit needed for catalysis is revealed on comparing the first "fully closed" crystal structures of a pseudo-Michaelis complex of wild-type Escherichia coli IDH (EcoIDH) and the "fully closed" reaction product complex of the K100M mutant with previously obtained "quasi-closed" and "open" conformations. Conserved catalytic residues, binding the nicotinamide ring of NADP(+) and the metal-bound substrate, move as rigid bodies during domain closure by a hinge motion that spans the central ß-sheet in each monomer. Interactions established between Thr105 and Ser113, which flank the "phosphorylation loop", and the nicotinamide mononucleotide moiety of NADP(+) establish productive coenzyme binding. Electrostatic interactions of a Lys100-Leu103-Asn115-Glu336 tetrad play a pivotal role in assembling a catalytically competent active site. As predicted, Lys230* is positioned to deprotonate/reprotonate the α-hydroxyl in both reaction steps and Tyr160 moves into position to protonate C3 following ß-decarboxylation. A proton relay from the catalytic triad Tyr160-Asp307-Lys230* connects the α-hydroxyl of isocitrate to the bulk solvent to complete the picture of the catalytic mechanism.


Assuntos
Biocatálise , Domínio Catalítico/efeitos dos fármacos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Nucleotídeos de Adenina/metabolismo , Nucleotídeos de Adenina/farmacologia , Escherichia coli/enzimologia , Modelos Moleculares , NADP/metabolismo , NADP/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia
20.
Genet Sel Evol ; 44: 2, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22268922

RESUMO

Residual feed intake (RFI) and feed conversion ratio (FCR) can be incorporated into a breeding program as traits to select for feed efficiency. Alternatively, the direct measures used to calculate RFI and FCR can be analyzed to determine the underlying variation in the traits that impact overall efficiency. These constituent traits can then be appropriately weighted in an index to achieve genetic gain. To investigate feed efficiency in the turkey, feed intake and weight gain were measured on male primary breeder line turkeys housed in individual feeding cages from 15 to 19 weeks of age. The FCR and RFI showed moderate heritability values of 0.16 and 0.21, respectively. Feed intake, body weight, and weight gain were also moderately heritable (0.25, 0.35, and 0.18, respectively). Weight gain was negatively correlated to feed conversion ratio and was not genetically correlated to RFI. Body weight had a small and positive genetic correlation to RFI (0.09) and FCR (0.12). Feed intake was positively genetically correlated to RFI (0.62); however, there was no genetic correlation between feed intake and FCR. These estimates of heritability and the genetic correlations can be used in the development of an index to improve feed efficiency and reduce the cost of production.


Assuntos
Cruzamento , Ingestão de Alimentos/genética , Característica Quantitativa Herdável , Perus/crescimento & desenvolvimento , Perus/genética , Ração Animal , Animais , Peso Corporal/genética , Feminino , Estudos de Associação Genética , Masculino , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA