Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 26(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34500691

RESUMO

C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.


Assuntos
Manose/metabolismo , Proteína C/metabolismo , Triptofano/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
2.
Glycoconj J ; 37(5): 635-645, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803368

RESUMO

C-Mannosyl tryptophan (C-Man-Trp) is a unique glycosylated amino acid present in various eukaryotes. The C-Man-Trp structure can be found as a monomeric form or a part of post-translational modifications within polypeptide chains in living organisms. However, the mechanism of how monomeric C-Man-Trp is produced has not been fully investigated. In this study, we assessed levels of cellular C-Man-Trp by ultra performance liquid chromatography with a mass spectrometry assay system, and investigated whether the cellular C-Man-Trp is affected by autophagy induction. The intracellular C-Man-Trp level was significantly increased under serum and/or amino acid starvation in A549, HaCaT, HepG2, NIH3T3, and NRK49F cells. The increase in C-Man-Trp was also observed in NIH3T3 cells treated with rapamycin, an autophagy inducer. The up-regulation of C-Man-Trp caused by starvation was reversed by the inhibition of lysosomal enzymes. We further showed that C-Man-Trp is produced by incubating a synthetic C-mannosylated peptide (C-Man-Trp-Ser-Pro-Trp) or thrombospondin (TSP) in a lysosomal fraction that was prepared from a mouse liver, which provides supporting evidence that C-Man-Trp is a degradation product of the C-mannosylated peptide or protein following lysosome-related proteolysis. Taken together, we propose that the autophagic pathway is a novel pathway that at least partly contributes to intracellular C-Man-Trp production under certain conditions, such as nutrient starvation.


Assuntos
Autofagia/genética , Processamento de Proteína Pós-Traducional/genética , Triptofano/análogos & derivados , Triptofano/genética , Sequência de Aminoácidos/genética , Animais , Células Cultivadas , Cromatografia Líquida , Glicosilação , Humanos , Manose/metabolismo , Espectrometria de Massas , Camundongos , Células NIH 3T3 , Peptídeos/genética , Peptídeos/metabolismo , Triptofano/química , Triptofano/metabolismo
3.
PLoS Biol ; 8(7): e1000416, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20625546

RESUMO

The actin capping protein (CP) tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity). Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1). V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a structural basis for the regulation of the barbed end elongation in cells.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Proteínas de Capeamento de Actina/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Galinhas , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células PC12 , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
4.
J Electron Microsc (Tokyo) ; 61(5): 321-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22872282

RESUMO

Atomic force microscopy (AFM) combined with unroofing techniques enabled clear imaging of the intracellular cytoskeleton and the cytoplasmic surface of the cell membrane under aqueous condition. Many actin filaments were found to form a complex meshwork on the cytoplasmic surface of the membrane, as observed in freeze-etching electron microscopy. Characteristic periodic striations of about 5 nm formed by the assembly of G-actin were detected along actin filaments at higher magnification. Actin filaments aggregated and dispersed at several points, thereby dividing the cytoplasmic surface of the membrane into several large domains. Microtubules were also easily detected and were often tethered to the membrane surface by fine filaments. Furthermore, clathrin coats on the membrane were clearly visualized for the first time in water by AFM. Although the resolution of these images is lower than electron micrographs of freeze-etched samples processed similarly, the measurement capabilities of the AFM in a more biologically relevant conditions demonstrate that it is an important tool for imaging intracellular structures and cell surfaces in the native, aqueous state.


Assuntos
Citoplasma/ultraestrutura , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica/métodos , Citoesqueleto de Actina , Actinas/ultraestrutura , Animais , Linhagem Celular , Membrana Celular/ultraestrutura , Técnica de Congelamento e Réplica/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Ratos , Propriedades de Superfície , Água/metabolismo
5.
Phys Biol ; 8(3): 035005, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572169

RESUMO

The actin capping protein (CP) tightly binds to the barbed end of actin filaments to block further elongation. The ß-tentacle in CP is an important region that ensures stable interaction with actin filaments. CARMIL inhibits the interaction of CP with actin filaments via the C-terminal portion containing the CP-binding motif, located in an intrinsically disordered region. We have proposed an allosteric inhibition model in which CARMIL suppresses CP by the population shift mechanism. Here, we solved a crystal structure of CP in complex with a CARMIL-derived peptide, CA32. The new structure clearly represents the α-helical form of the ß-tentacle that was invisible in other CP/CARMIL peptide complex structures. In addition, we exhaustively performed a normal mode analysis with the elastic network model on all available crystal structures of the CP/CARMIL peptide complexes, including the new structure. We concluded that the CP-binding motif is necessary and sufficient for altering the fluctuation of CP, which is essential for attenuating the barbed-end-capping activity along the population shift mechanism. The roles and functions of the ß-tentacle and the CP-binding motif are discussed in terms of their intrinsically disordered nature.


Assuntos
Proteínas de Capeamento de Actina/antagonistas & inibidores , Proteínas de Capeamento de Actina/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica
6.
Sci Rep ; 11(1): 1946, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479412

RESUMO

C-Mannosyl tryptophan (CMW) is a unique glycosylated amino acid, and a candidate novel biomarker of renal function. In type 2 diabetes (T2D), a combination of metabolites including CMW has recently been the focus of novel biomarkers for the evaluation of renal function and prediction of its decline. However, previous quantification methods for serum CMW have several limitations. We recently established a novel assay for quantifying serum CMW. Serum CMW from 99 Japanese patients with T2D was quantified by this assay using hydrophilic interaction liquid chromatography. The serum CMW levels were cross-sectionally characterized in relation to clinical features, including renal function and vascular complications. Serum CMW level was more strongly correlated with serum creatinine and cystatin C levels and with eGFR than with albumin urea level. The ROC curve to detect eGFR < 60 ml/min/1.73 m2 revealed that the cutoff serum CMW level was 337.5 nM (AUC 0.883). Serum CMW levels were higher in patients with a history of macroangiopathy than in those without history. They correlated with ankle-brachial pressure index, whereas cystatin C did not. Serum CMW levels quantified by the novel assay could be useful in evaluation of glomerular filtration of renal function and peripheral arterial disease in T2D.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Taxa de Filtração Glomerular , Manose/química , Triptofano/sangue , Biomarcadores/sangue , Cromatografia Líquida , Creatina/sangue , Cistatina C/sangue , Angiopatias Diabéticas/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Triptofano/química
7.
Oncol Lett ; 19(1): 908-916, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31885719

RESUMO

Ovarian cancer survival is poor, in part, because there are no specific biomarkers for early diagnosis. C-Mannosyl tryptophan (CMW) is a structurally unique glycosylated amino acid recently identified as a novel biomarker of renal dysfunction. The present study investigated whether blood CMW is altered in patients with ovarian cancer and whether differences in blood CMW can distinguish benign from malignant ovarian tumors. Plasma samples were obtained from 49 patients with malignant, borderline or benign ovarian tumors as well as from seven age-matched healthy women. CMW was identified and quantified in these samples using ultra-performance liquid chromatography with fluorometry. Plasma CMW was significantly higher in the malignant tumor group than in the borderline and benign tumor groups, and higher in the combined tumor group (malignant, borderline or benign) compared with healthy controls. Receiver operating characteristic curve analysis of plasma CMW distinguished malignant tumors from borderline/benign tumors [area under the curve (AUC)=0.905]. Discrimination performance was greater than that of cancer antigen (CA) 125 (AUC=0.835), and CMW + CA125 combined achieved even greater discrimination (AUC=0.913, 81.8% sensitivity, 87.5% specificity, 93.1% positive predictive value and 70.0% negative predictive value). Plasma CMW differentiates malignant ovarian cancer from borderline or benign ovarian tumors with high accuracy, and performance is further improved by combined CMW and CA125 measurement.

8.
Biochim Biophys Acta Gen Subj ; 1864(8): 129632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416197

RESUMO

BACKGROUND: Mindin (spondin2), a secretory protein related to neural development and immunity, is a member of thrombospondin type I repeat (TSR) superfamily proteins, and has a unique glycosylation of C-mannosylation in its structure. However, it remains unclear whether C-mannosylation plays a functional role in the biosynthesis of mindin in cells. METHODS: Protein C-mannosylation was analyzed by mass spectrometry. Mindin expression was examined by immunoblot and immunofluorescence analyses in COS-7 cells transfected with the expression vectors for wild type (mindin-WT) or C-mannosylation-defective mutant of mindin (mindin-mutF). The redox status was examined in mindin by using 4-acetoamide-4'-maleimidylstilbene-2,2'-disulfonate. RESULTS: When mindin cDNA was expressed in COS-7 cells, C-mannosylation of mindin was confirmed at Trp257 by mass spectrometry. In cells expressing a mindin-mutF, secretion of the mutant was significantly inhibited compared with mindin-WT. In immunofluorescence analysis, mindin-mutF was accumulated in the endoplasmic reticulum (ER), whereas mindin-WT was detected in the Golgi. In addition, mindin-mutF showed an enhanced interaction with calreticulin, an ER-resident chaperone, in cells. In cells, reduced forms were increased in mindin-mutF, compared with a mostly oxidized form of mindin-WT. In the presence of chemical chaperones such as dimethylsulfoxide or 4-phenylbutyrate, inhibited secretion of mindin-mutF was ameliorated in cells, although redox-dependent folding was not affected. CONCLUSIONS: C-Mannosylation of mindin facilitates its secretion especially through modulating disulfide bond formation in mindin in cells. GENERAL SIGNIFICANCE: These results suggest that C-mannosylation plays a functional role in the redox-dependent folding and transport of TSR superfamily proteins in cells.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Manose/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Glicosilação , Camundongos , Chaperonas Moleculares/metabolismo , Células NIH 3T3 , Coelhos
9.
Biochimie ; 171-172: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004653

RESUMO

Oxidative folding of proinsulin in the endoplasmic reticulum (ER) is critical for the proper sorting and secretion of insulin from pancreatic ß-cells. Here, by using non-cell-based insulin aggregation assays and mouse insulinoma-derived MIN6 cells, we searched for a candidate molecular chaperone for (pro)insulin when its oxidative folding is compromised. We found that interaction between insulin and calreticulin (CRT), a lectin that acts as an ER-resident chaperone, was enhanced by reductive stress in MIN6 cells. Co-incubation of insulin with recombinant CRT prevented reductant-induced aggregation of insulin. Furthermore, lysosomal degradation of proinsulin, which was facilitated by dithiothreitol-induced reductive stress, depended on CRT in MIN6 cells. Together, our results suggest that CRT may be a protective molecule against (pro)insulin aggregation when oxidative folding is defective, e.g. under reductive stress conditions, in vitro and in cultured cells. Because CRT acts as a molecular chaperone for not only glycosylated proteins but also non-glycosylated polypeptides, we also propose that (pro)insulin is a novel candidate client of the chaperone function of CRT.


Assuntos
Calreticulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Chaperonas Moleculares/metabolismo , Proinsulina/metabolismo , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/patologia , Camundongos , Agregação Patológica de Proteínas , Dobramento de Proteína
10.
Sci Rep ; 9(1): 4675, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886328

RESUMO

C-Mannosyl tryptophan (C-Man-Trp) is a unique molecule in that an α-mannose is connected to the indole C2 carbon atom of a Trp residue via C-glycosidic linkage. Although serum C-Man-Trp may be a novel biomarker of renal function in humans, the biological significance of C-Man-Trp has yet to be fully investigated. In this study, a novel assay system for C-Man-Trp was established using hydrophilic-interaction liquid chromatography, followed by detecting the fluorescence intensity or mass abundance of C-Man-Trp. Using this system, we systematically assessed the amount of free monomeric C-Man-Trp in different tissues of mice. The tissue level of C-Man-Trp was high, especially in the ovaries and uterus. Other organs with high levels of C-Man-Trp included the brain, spleen, lungs, bladder, and testes. The level was low in skeletal muscle. We also investigated whether the tissue level of C-Man-Trp is affected in diabetes. In KK-Ay diabetic mice, the level of urinary C-Man-Trp excretion was increased, and the tissue levels of C-Man-Trp were decreased in the liver but increased in the kidney. These results demonstrate that C-Man-Trp is differentially distributed in numerous tissues and organs in mice, and the levels are altered by disordered carbohydrate metabolism such as diabetes.


Assuntos
Diabetes Mellitus/metabolismo , Rim/metabolismo , Ovário/metabolismo , Triptofano/análogos & derivados , Útero/metabolismo , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Fluorescência , Humanos , Camundongos , Camundongos Mutantes , Triptofano/metabolismo
11.
Biophys J ; 95(2): 710-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18339732

RESUMO

Tropomyosin (Tm) is a two-stranded alpha-helical coiled-coil protein, and when associated with troponin, it is responsible for the actin filament-based regulation of muscle contraction in vertebrate skeletal and cardiac muscles. It is widely believed that Tm adopts a flexible rod-like structure in which the flexibility must play a crucial role in its functions. To obtain more information about the flexibility of Tm, we solved and compared two crystal structures of the identical C-terminal segments, spanning approximately 40% of the entire length. We also compared these structures with our previously reported crystal structure of an almost identical Tm segment in a distinct crystal form. The parameters specifying the local coiled-coil geometry, such as the separation between two helices and the local helical pitch, undulate along the length of Tm in the same way as among the three crystal structures, indicating that these parameters are defined by the amino acid sequence. In the region of increased separation, around Glu-218 and Gln-263, the hydrophobic core is disrupted by three holes. Moreover, for the first time to our knowledge, for Tm, water molecules have been identified in these holes. In some structures, the B-factors are higher around the holes than in the rest of the molecule. The Tm coiled-coil must be destabilized and therefore may be flexible, not only in the alanine clusters but also in the regions of the broken core. A closer look at the local staggering between the two chains and the local bending revealed that the strain accumulates at the alanine cluster and may be relaxed in the broken core region. Moreover, the strain is distributed over a long range, even when a deformation like bending may occur at a limited number of spots. Thus, Tm should not be regarded as a train of short rigid rods connected by flexible linkers, but rather as a seamless rubber rod patched with relatively more flexible regions.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Solventes/química , Tropomiosina/química , Tropomiosina/ultraestrutura , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Conformação Proteica
12.
Biochem Biophys Res Commun ; 369(1): 100-8, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18082133

RESUMO

In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by approximately 0.1% upon activation relative to the relaxing state and increased by approximately 0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca(2+)-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca(2+)-binding and the second induced by actomyosin interaction.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Tropomiosina/fisiologia , Tropomiosina/ultraestrutura , Troponina/fisiologia , Troponina/ultraestrutura , Animais , Sítios de Ligação , Células Cultivadas , Ligação Proteica , Conformação Proteica , Rana catesbeiana , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Difração de Raios X
13.
Adv Exp Med Biol ; 592: 137-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17278362

RESUMO

Tropomyosin (Tm) is a 400 angstroms long coiled coil protein, and with troponin it regulates contraction in skeletal and cardiac muscles in a [Ca2+]-dependent manner. Tm consists of multiple domains with diverse stabilities in the coiled coil form, thus providing Tm with dynamic flexibility. This flexibility must play important roles in the actin binding and the cooperative transition between the calcium regulated states of the entire muscle thin filament. In order to understand the flexibility of Tm in its entirety, the atomic coordinates of Tm are needed. Here we report the two crystal structures of Tm segments. One is rabbit skeletal muscle alpha-Tm encompassing residues 176-284 with an N-terminal extension of 25 residues from the leucine zipper sequence of GCN4, which includes the region that interacts with the troponin core domain. The other is alpha-Tm encompassing residues 176-273 with N- and C-terminal extensions of the leucine zipper sequences. These two crystal structures imply that this molecule is a flexible coiled coil. First, Tm's are not homogeneous and smooth coiled coils, but instead they undulate, with highly fluctuating local parameters specifying the coiled coil. Independent fluctuating showed by two crystal structures is important. Second, in the first crystal, the coiled coil is bent by 9 degrees in the region centered about Y214-E218-Y221, where the inter-helical distance has its maximum. On the other hand, no bend is observed at the same region in the second crystal even if its inter-helical distance has also its maximum. E218, an unusual negatively charged residue at the a position in the heptad repeat, seems to play the key role in destabilizing the coiled coil with alanine destabilizing clusters.


Assuntos
Tropomiosina/química , Animais , Cristalização , Cristalografia por Raios X , Músculo Esquelético/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos
14.
Adv Exp Med Biol ; 592: 327-40, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17278377

RESUMO

Strong evidence has been accumulated that the conformational changes of the thin actin filaments are occurring and playing an important role in the entire process of muscle contraction. The conformational changes and the mechanical properties of the thin actin filaments we have found by X-ray fiber diffraction on skeletal muscle contraction are explored. Recent studies on the conformational changes of regulatory proteins bound to actin filaments upon activation and in the force generation process are also described. Finally, the roles of structural alterations and dynamics of the actin filaments are discussed in conjunction with the regulation mechanism and the force generation mechanism.


Assuntos
Actinas/química , Actinas/fisiologia , Contração Muscular/fisiologia , Síncrotrons , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA