RESUMO
Heparin-binding EGF-like growth factor (HB-EGF) plays an indispensable role in suppression of cell proliferation during mouse valvulogenesis. However, ligands of the EGF receptor (EGFR/ErbB1), including HB-EGF, are generally considered as growth-promoting factors, as shown in cancers. HB-EGF binds to and activates ErbB1 and ErbB4. We investigated the role of ErbB receptors in valvulogenesis in vivo using ErbB1- and ErbB4-deficient mice, and an ex vivo model of endocardial cushion explants. We show that HB-EGF suppresses valve mesenchymal cell proliferation through a heterodimer of ErbB1 and ErbB4, and an ErbB1 ligand (or ligands) promotes cell proliferation through a homodimer of ErbB1. Moreover, a rescue experiment with cleavable or uncleavable isoforms of ErbB4 in ERBB4-null cells indicates that the cleavable JM-A, but not the uncleavable JM-B, splice variant of ErbB4 rescues the defect of the null cells. These data suggest that the cytoplasmic intracellular domain of ErbB4, rather than the membrane-anchored tyrosine kinase, achieves this suppression. Our study demonstrates that opposing signals generated by different ErbB dimer combinations function in the same cardiac cushion mesenchymal cells for proper cardiac valve formation.
Assuntos
Receptores ErbB/metabolismo , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Mesoderma/citologia , Organogênese , Receptor ErbB-4/metabolismo , Transdução de Sinais , Alelos , Animais , Proliferação de Células , Embrião de Mamíferos/metabolismo , Genes Dominantes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Ligantes , Camundongos Knockout , Modelos Biológicos , Mutação/genética , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/química , Regulação para CimaRESUMO
HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.
Assuntos
Coxins Endocárdicos/metabolismo , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Proliferação de Células , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Técnicas In Vitro , Mesoderma/metabolismo , CamundongosRESUMO
The bilateral symmetry of the mouse embryo is broken by leftward fluid flow in the node. However, it is unclear how this directional flow is then translated into the robust, left side-specific Nodal gene expression that determines and coordinates left-right situs throughout the embryo. While manipulating Nodal and Lefty gene expression, we have observed phenomena that are indicative of the involvement of a self-enhancement and lateral-inhibition (SELI) system. We constructed a mathematical SELI model that not only simulates, but also predicts, experimental data. As predicted by the model, Nodal expression initiates even on the right side. These results indicate that directional flow represents an initial small difference between the left and right sides of the embryo, but is insufficient to determine embryonic situs. Nodal and Lefty are deployed as a SELI system required to amplify this initial bias and convert it into robust asymmetry.
Assuntos
Padronização Corporal/fisiologia , Embrião de Mamíferos/embriologia , Indução Embrionária , Animais , Padronização Corporal/genética , Simulação por Computador , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Vetores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Fatores de Determinação Direita-Esquerda , Camundongos , Camundongos Mutantes , Modelos Biológicos , Modelos Teóricos , Proteína Nodal , Técnicas de Cultura de Órgãos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Homeobox PITX2RESUMO
CBP501 is an anti-cancer drug candidate which has been shown to increase cis-diamminedichloro-platinum (II) (CDDP) uptake into cancer cell through calmodulin (CaM) inhibition. However, the effects of CBP501 on the cells in the tumor microenvironment have not been addressed. Here, we investigated new aspects of the potential anti-tumor mechanism of action of CBP501 by examining its effects on the macrophages. Macrophages contribute to cancer-related inflammation and sequential production of cytokines such as IL-6 and TNF-α which cause various biological processes that promote tumor initiation, growth and metastasis (1). These processes include the epithelial to mesenchymal transition (EMT) and cancer stem cell (CSC) formation, which are well-known, key events for metastasis. The present work demonstrates that CBP501 suppresses lipopolysaccharide (LPS)-induced production of IL-6, IL-10 and TNF-α by macrophages. CBP501 also suppressed formation of the tumor spheroids by culturing with conditioned medium from the LPS-stimulated macrophage cell line RAW264.7. Moreover, CBP501 suppressed expression of ABCG2, a marker for CSCs, by inhibiting the interaction between cancer cells expressing VCAM-1 and macrophages expressing VLA-4. Consistently with these results, CBP501 in vivo suppressed metastases of a tumor cell line, 4T1, one which is insensitive to combination treatment of CBP501 and CDDP in vitro. Taken together, these results offer potential new, unanticipated advantages of CBP501 treatment in anti-tumor therapy through a mechanism that entails the suppression of interactions between macrophages and cancer cells with suppression of sequential CSC-like cell formation in the tumor microenvironment.
RESUMO
The anti-cancer agent CBP501 binds to calmodulin (CaM). Recent studies showed that migration and metastasis are inhibited by several CaM antagonists. However, there is no available evidence that CBP501 has similar effects. Here we found that CBP501 inhibits migration of non-small cell lung cancer (NSCLC) cells in vitro, even in the presence of migration inducing factors such as WNT, IL-6, and several growth factors. CBP501 also inhibited epidermal growth factor (EGF) enhanced invasion and the epithelial-to-mesenchymal transition (EMT), and this inhibition was accompanied by (i) suppression of Akt and ERK1/2 phosphorylation, and (ii) suppression of expression of transcription factor Zeb1 and the mesenchymal marker Vimentin. A pull down analysis performed using sepharose-immobilized CaM showed that CBP501 blocks the interaction between CaM and KRas. Furthermore, EGF induced Akt activation and cell migration was effectively suppressed by KRas down-regulation in NSCLC cells. Stable knockdown of KRas also made cells insensitive to CBP501's inhibition of growth factor-induced migration. Taken together, these results indicate that CBP501 inhibits binding of CaM with KRas and thereby suppresses the PI3K/AKT pathway, migration, invasion and EMT. These findings have identified a previously unrecognized effect of CBP501 on downstream KRas signaling mechanisms involving EMT and invasion, and provide support for the further clinical development of this agent.
RESUMO
CBP501 is an anticancer drug candidate that was investigated in two randomized phase II clinical trials for patients with nonsquamous non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). CBP501 has been shown to have two mechanisms of action, namely calmodulin modulation and G2 checkpoint abrogation. Here, we searched for a biomarker to predict sensitivity to CBP501. Twenty-eight NSCLC cell lines were classified into two subgroups, CBP501-sensitive and -insensitive, by quantitatively analyzing the cis-diamminedichloro-platinum (II) (CDDP)-enhancing activity of CBP501 through treatments with short-term (1 hour) coexposure to CDDP and CBP501 or to either alone. Microarray analysis was performed on these cell lines to identify gene expression patterns that correlated with CBP501 sensitivity. We found that multiple nuclear factor erythroid-2-related factor 2 (Nrf2) target genes showed high expression in CBP501-insensitive cell lines. Western blot and immunocytochemical analysis for Nrf2 in NSCLC cell lines also indicated higher protein level in CBP501-insensitive cell lines. Moreover, CBP501 sensitivity is modulated by silencing or sulforaphane-induced overexpression of Nrf2. These results indicate that Nrf2 transcription factor is a potential candidate as a biomarker for resistance to CBP501. This study might help to identify those subpopulations of patients who would respond well to the CBP501 and CDDP combination treatment of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fragmentos de Peptídeos/química , Fosfatases cdc25/química , Biomarcadores Tumorais/química , Calmodulina/química , Ciclo Celular , Linhagem Celular Tumoral , Fase G2 , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/metabolismo , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismoRESUMO
CBP501 is an anticancer drug currently in randomized phase II clinical trials for patients with non-small cell lung cancer and malignant pleural mesothelioma. CBP501 was originally described as a unique G(2) checkpoint-directed agent that binds to 14-3-3, inhibiting the actions of Chk1, Chk2, mitogen-activated protein kinase-activated protein kinase 2, and C-Tak1. However, unlike a G(2) checkpoint inhibitor, CBP501 clearly enhances the accumulation of tumor cells at G(2)-M phase that is induced by cisplatin or bleomycin at low doses and short exposure. By contrast, CBP501 does not similarly affect the accumulation of tumor cells at G(2)-M that is induced by radiation, doxorubicin, or 5-fluorouracil treatment. Our recent findings point to an additional mechanism of action for CBP501. The enhanced accumulation of tumor cells at G(2)-M upon combined treatment with cisplatin and CBP501 results from an increase in intracellular platinum concentrations, which leads to increased binding of platinum to DNA. The observed CBP501-enhanced platinum accumulation is negated in the presence of excess Ca(2+). Some calmodulin inhibitors behave similarly to, although less potently than, CBP501. Furthermore, analysis by surface plasmon resonance reveals a direct, high-affinity molecular interaction between CBP501 and CaM (K(d) = 4.62 × 10(-8) mol/L) that is reversed by Ca(2+), whereas the K(d) for the complex between CBP501 and 14-3-3 is approximately 10-fold weaker and is Ca(2+) independent. We conclude that CaM inhibition contributes to CBP501's activity in sensitizing cancer cells to cisplatin or bleomycin. This article presents an additional mechanism of action which might explain the clinical activity of the CBP501-cisplatin combination.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bleomicina/farmacologia , Calmodulina/metabolismo , Cisplatino/farmacologia , Neoplasias/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Fosfatases cdc25/farmacologia , Bleomicina/administração & dosagem , Cloreto de Cálcio/farmacologia , Calmodulina/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacocinética , Adutos de DNA/biossíntese , Sinergismo Farmacológico , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fragmentos de Peptídeos/farmacocinética , Fosfatases cdc25/farmacocinéticaRESUMO
In mouse, left-right (L-R) patterning depends on asymmetric expression of Nodal around the node, leading to Nodal expression specifically in the left lateral plate mesoderm (LPM). Bone morphogenetic protein (BMP) signaling is also involved, but the mechanistic relationship with Nodal expression remains unclear. We find that BMP signal transduction is higher in the right LPM, although Bmp4, which is required for L-R patterning, is expressed symmetrically. By contrast, the BMP antagonists noggin (Nog) and chordin (Chrd) are expressed at higher levels in the left LPM. In Chrd;Nog double mutants, BMP signaling is elevated on both sides, whereas Nodal expression is absent. Ectopic expression of Nog in the left LPM of double mutants restores Nodal expression. Ectopic Bmp4 expression in the left LPM of wild-type embryos represses Nodal transcription, whereas ectopic Nog in the right LPM leads to inappropriate Nodal expression. These data indicate that chordin and noggin function to limit BMP signaling in the left LPM, thereby derepressing Nodal expression. In the node, they promote peripheral Nodal expression and proper node morphology, potentially in concert with Notch signaling. These results indicate that BMP antagonism is required in both the node and LPM to facilitate L-R axis establishment in the mammalian embryo.
Assuntos
Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Mesoderma/metabolismo , Animais , Animais não Endogâmicos , Padronização Corporal/genética , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/genética , Glicoproteínas/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Modelos Biológicos , Mutação , Proteína Nodal , Técnicas de Cultura de Órgãos , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismoRESUMO
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and ERBB4. Here, we show that HB-EGF-EGFR signaling is involved in eyelid development. HB-EGF expression is restricted to the tip of the leading edge of the migrating epithelium during eyelid closure in late gestation mouse embryos. Both HB-EGF null (HB(del/del)) and secretion-deficient (HB(uc/uc)) mutant embryos exhibited delayed eyelid closure, owing to slower leading edge extension and reduced actin bundle formation in migrating epithelial cells. No changes in cell proliferation were observed in these embryos. In addition, activation of EGFR and ERK was decreased in HB(del/del) eyelids. Crosses between HB(del/del) mice and waved 2 mice, a hypomorphic EGFR mutant strain, indicate that HB-EGF and EGFR interact genetically in eyelid closure. Together with our data showing that embryos treated with an EGFR-specific kinase inhibitor phenocopy HB(del/del) embryos, these data indicate that EGFR mediates HB-EGF-dependent eyelid closure. Finally, analysis of eyelid closure in TGFalpha-null mice and in HB-EGF and TGFalpha double null mice revealed that HB-EGF and TGFalpha contribute equally to and function synergistically in this process. These results indicate that soluble HB-EGF secreted from the tip of the leading edge activates the EGFR and ERK pathway, and that synergy with TGFalpha is required for leading edge extension in epithelial sheet migration during eyelid closure.
Assuntos
Fator de Crescimento Epidérmico/fisiologia , Células Epiteliais/fisiologia , Pálpebras/metabolismo , Actinas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Fator de Crescimento Epidérmico/biossíntese , Fator de Crescimento Epidérmico/genética , Receptores ErbB/metabolismo , Receptores ErbB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Pálpebras/citologia , Pálpebras/embriologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Mutação , Transdução de Sinais , Fator de Crescimento Transformador alfa/fisiologiaRESUMO
The transcription factor Foxh1 mediates Nodal signaling. The role of Foxh1 in left-right (LR) patterning was examined with mutant mice that lack this protein in lateral plate mesoderm (LPM). The mutant mice failed to express Nodal, Lefty2 and Pitx2 on the left side during embryogenesis and exhibited right isomerism. Ectopic introduction of Nodal into right LPM, by transplantation of left LPM or by electroporation of a Nodal vector, induced Nodal expression in wild-type embryos but not in the mutant. Ectopic Nodal expression in right LPM also induced Lefty1 expression in the floor plate. Nodal signaling thus initiates asymmetric Nodal expression in LPM and induces Lefty1 at the midline. Monitoring of Nodal activity in wild-type and Foxh1 mutant embryos suggested that Nodal activity travels from the node to left LPM, and from left LPM to the midline.