Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; 19(2): e2204662, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373704

RESUMO

Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell-surface interactions and their effects on late cellular functions is essential for a rational design of such topographies, yet still elusive. In this work, fluidic force microscopy (FluidFM) and atomic force microscopy (AFM) combined with optical and electron microscopy are used to quantitatively investigate the interaction of preosteoblasts with 3D-printed patterns after 4 and 24 h of culture. The patterns consist of pillars with the same diameter (200 nm) and interspace (700 nm) but distinct heights (500 and 1000 nm) and osteogenic properties. FluidFM reveals a higher cell adhesion strength after 24 h of culture on the taller pillars (32 ± 7 kPa versus 21.5 ± 12.5 kPa). This is associated with attachment of cells partly on the sidewalls of these pillars, thus requiring larger normal forces for detachment. Furthermore, the higher resistance to shear forces observed for these cells indicates an enhanced anchorage and can be related to the persistence and stability of lamellipodia. The study explains the differential cell adhesion behavior induced by different pillar heights, enabling advancements in the rational design of osteogenic patterns.


Assuntos
Osteogênese , Impressão Tridimensional , Microscopia de Força Atômica , Microscopia Eletrônica
2.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012467

RESUMO

Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of 'nano-knife' structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO 'nano-knife' structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Grafite , Humanos , Nanopartículas Metálicas/química , Osteogênese , Porosidade , Impressão Tridimensional , Prata/química , Prata/farmacologia , Titânio/química , Titânio/farmacologia
3.
Small ; 17(24): e2100706, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978318

RESUMO

Despite the potential of small-scale pillars of black titanium (bTi) for killing the bacteria and directing the fate of stem cells, not much is known about the effects of the pillars' design parameters on their biological properties. Here, three distinct bTi surfaces are designed and fabricated through dry etching of the titanium, each featuring different pillar designs. The interactions of the surfaces with MC3T3-E1 preosteoblast cells and Staphylococcus aureus bacteria are then investigated. Pillars with different heights and spatial organizations differently influence the morphological characteristics of the cells, including their spreading area, aspect ratio, nucleus area, and cytoskeletal organization. The preferential formation of focal adhesions (FAs) and their size variations also depend on the type of topography. When the pillars are neither fully separated nor extremely tall, the colocalization of actin fibers and FAs as well as an enhanced matrix mineralization are observed. However, the killing efficiency of these pillars against the bacteria is not as high as that of fully separated and tall pillars. This study provides a new perspective on the dual-functionality of bTi surfaces and elucidates how the surface design and fabrication parameters can be used to achieve a surface topography with balanced bactericidal and osteogenic properties.


Assuntos
Substitutos Ósseos , Titânio , Osteoblastos , Osteogênese , Propriedades de Superfície
4.
Ann Neurol ; 79(2): 244-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26528954

RESUMO

OBJECTIVE: DNAJC6 mutations were recently described in two families with autosomal recessive juvenile parkinsonism (onset age < 11), prominent atypical signs, poor or absent response to levodopa, and rapid progression (wheelchair-bound within ∼10 years from onset). Here, for the first time, we report DNAJC6 mutations in early-onset Parkinson's disease (PD). METHODS: The DNAJC6 open reading frame was analyzed in 274 patients with early-onset sporadic or familial PD. Selected variants were followed up by cosegregation, homozygosity mapping, linkage analysis, whole-exome sequencing, and protein studies. RESULTS: We identified two families with different novel homozygous DNAJC6 mutations segregating with PD. In each family, the DNAJC6 mutation was flanked by long runs of homozygosity within highest linkage peaks. Exome sequencing did not detect additional pathogenic variants within the linkage regions. In both families, patients showed severely decreased steady-state levels of the auxilin protein in fibroblasts. We also identified a sporadic patient carrying two rare noncoding DNAJC6 variants possibly effecting RNA splicing. All these cases fulfilled the criteria for a clinical diagnosis of early-onset PD, had symptoms onset in the third-to-fifth decade, and slow disease progression. Response to dopaminergic therapies was prominent, but, in some patients, limited by psychiatric side effects. The phenotype overlaps that of other monogenic forms of early-onset PD. INTERPRETATION: Our findings delineate a novel form of hereditary early-onset PD. Screening of DNAJC6 is warranted in all patients with early-onset PD compatible with autosomal recessive inheritance. Our data provide further evidence for the involvement of synaptic vesicles endocytosis and trafficking in PD pathogenesis.


Assuntos
Auxilinas/metabolismo , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP40/genética , Transtornos Parkinsonianos/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Parkinsonianos/metabolismo , Fenótipo , Adulto Jovem
5.
Mov Disord ; 31(7): 1041-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27090768

RESUMO

BACKGROUND: ECHS1 encodes a mitochondrial enzyme involved in the degradation of essential amino acids and fatty acids. Recently, ECHS1 mutations were shown to cause a new severe metabolic disorder presenting as Leigh or Leigh-like syndromes. The objective of this study was to describe a family with 2 siblings affected by different dystonic disorders as a resulting phenotype of ECHS1 mutations. METHODS: Clinical evaluation, MRI imaging, genome-wide linkage, exome sequencing, urine metabolite profiling, and protein expression studies were performed. RESULTS: The first sibling is 17 years old and presents with generalized dystonia and severe bilateral pallidal MRI lesions after 1 episode of infantile subacute metabolic encephalopathy (Leigh-like syndrome). In contrast, the younger sibling (15 years old) only suffers from paroxysmal exercise-induced dystonia and has very mild pallidal MRI abnormalities. Both patients carry compound heterozygous ECHS1 mutations: c.232G>T (predicted protein effect: p.Glu78Ter) and c.518C>T (p.Ala173Val). Linkage analysis, exome sequencing, cosegregation, expression studies, and metabolite profiling support the pathogenicity of these mutations. Expression studies in patients' fibroblasts showed mitochondrial localization and severely reduced levels of ECHS1 protein. Increased urinary S-(2-carboxypropyl)cysteine and N-acetyl-S-(2-carboxypropyl)cysteine levels, proposed metabolic markers of this disorder, were documented in both siblings. Sequencing ECHS1 in 30 unrelated patients with paroxysmal dyskinesias revealed no further mutations. CONCLUSIONS: The phenotype associated with ECHS1 mutations might be milder than reported earlier, compatible with prolonged survival, and also includes isolated paroxysmal exercise-induced dystonia. ECHS1 screening should be considered in patients with otherwise unexplained paroxysmal exercise-induced dystonia, in addition to those with Leigh and Leigh-like syndromes. Diet regimens and detoxifying agents represent potential therapeutic strategies. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/fisiopatologia , Enoil-CoA Hidratase/deficiência , Adolescente , Enoil-CoA Hidratase/genética , Exercício Físico , Humanos , Masculino , Linhagem
6.
Nat Commun ; 14(1): 855, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869036

RESUMO

Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.


Assuntos
Comunicação Celular , Osteócitos , Matriz Extracelular , Medicina Regenerativa , Fibras de Estresse
7.
Mater Sci Eng C Mater Biol Appl ; 120: 111745, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545887

RESUMO

The recently developed additively manufacturing techniques have enabled the fabrication of porous biomaterials that mimic the characteristics of the native bone, thereby avoiding stress shielding and facilitating bony ingrowth. However, aseptic loosening and bacterial infection, as the leading causes of implant failure, need to be further addressed through surface biofunctionalization. Here, we used a combination of (1) plasma electrolytic oxidation (PEO) using Ca-, P-, and silver nanoparticle-rich electrolytes and (2) post-PEO hydrothermal treatments (HT) to furnish additively manufactured Ti-6Al-4V porous implants with a multi-functional surface. The applied HT led to the formation of hydroxyapatite (HA) nanocrystals throughout the oxide layer. This process was controlled by the supersaturation of Ca2+ and PO43- during the hydrothermal process. Initially, the high local supersaturation resulted in homogenous nucleation of spindle-like nanocrystals throughout the surface. As the process continued, the depletion of reactant ions in the outermost surface layer led to a remarkable decrease in the supersaturation degrees. High aspect-ratio nanorods and hexagonal nanopillars were, therefore, created. The unique hierarchical structure of the microporous PEO layer (pore size < 3 µm) and spindle-like HA nanocrystals (<150 nm) on the surface of macro-porous additively manufactured Ti-6Al-4V implants provided a favorable substrate for the anchorage of cytoplasmic extensions assisting cell attachment and migration on the surface. The results of our in vitro assays clearly showed the important benefits of the HT and the spindle-like HA nanocrystals including a significantly stronger and much more sustained antibacterial activity, significantly higher levels of pre-osteoblasts metabolic activity, and significantly higher levels of alkaline phosphatase activity as compared to similar PEO-treated implants lacking the HT.


Assuntos
Nanopartículas Metálicas , Titânio , Antibacterianos/farmacologia , Durapatita , Porosidade , Prata/farmacologia , Titânio/farmacologia
8.
ACS Appl Mater Interfaces ; 13(29): 33767-33781, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34250808

RESUMO

The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2-60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., "top state"). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers.


Assuntos
Resinas Acrílicas/química , Adesão Celular/fisiologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular , Módulo de Elasticidade , Camundongos , Modelos Biológicos , Osteoblastos/citologia , Osteopontina/metabolismo , Molhabilidade
9.
Lancet Neurol ; 17(7): 597-608, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29887161

RESUMO

BACKGROUND: Most patients with Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies do not carry mutations in known disease-causing genes. The aim of this study was to identify a novel gene implicated in the development of these disorders. METHODS: Our study was done in three stages. First, we did genome-wide linkage analysis of an Italian family with dominantly inherited Parkinson's disease to identify the disease locus. Second, we sequenced the candidate gene in an international multicentre series of unrelated probands who were diagnosed either clinically or pathologically with Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies. As a control, we used gene sequencing data from individuals with abdominal aortic aneurysms (who were not examined neurologically). Third, we enrolled an independent series of patients diagnosed clinically with Parkinson's disease and controls with no signs or family history of Parkinson's disease, Parkinson's disease dementia, or dementia with Lewy bodies from centres in Portugal, Sardinia, and Taiwan, and screened them for specific variants. We also did mRNA and brain pathology studies in three patients from the international multicentre series carrying disease-associated variants, and we did functional protein studies in in-vitro models, including neurons from induced pluripotent stem-like cells. FINDINGS: Molecular studies were done between Jan 1, 2008, and Dec 31, 2017. In the initial kindred of ten affected Italian individuals (mean age of disease onset 59·8 years [SD 8·7]), we detected significant linkage of Parkinson's disease to chromosome 14 and nominated LRP10 as the disease-causing gene. Among the international series of 660 probands, we identified eight individuals (four with Parkinson's disease, two with Parkinson's disease dementia, and two with dementia with Lewy bodies) who carried different, rare, potentially pathogenic LRP10 variants; one carrier was found among 645 controls with abdominal aortic aneurysms. In the independent series, two of these eight variants were detected in three additional Parkinson's disease probands (two from Sardinia and one from Taiwan) but in none of the controls. Of the 11 probands from the international and independent cohorts with LRP10 variants, ten had a positive family history of disease and DNA was available from ten affected relatives (in seven of these families). The LRP10 variants were present in nine of these ten relatives, providing independent-albeit limited-evidence of co-segregation with disease. Post-mortem studies in three patients carrying distinct LRP10 variants showed severe Lewy body pathology. Of nine variants identified in total (one in the initial family and eight in stage 2), three severely affected LRP10 expression and mRNA stability (1424+5delG, 1424+5G→A, and Ala212Serfs*17, shown by cDNA analysis), four affected protein stability (Tyr307Asn, Gly603Arg, Arg235Cys, and Pro699Ser, shown by cycloheximide-chase experiments), and two affected protein localisation (Asn517del and Arg533Leu; shown by immunocytochemistry), pointing to loss of LRP10 function as a common pathogenic mechanism. INTERPRETATION: Our findings implicate LRP10 gene defects in the development of inherited forms of α-synucleinopathies. Future elucidation of the function of the LRP10 protein and pathways could offer novel insights into mechanisms, biomarkers, and therapeutic targets. FUNDING: Stichting ParkinsonFonds, Dorpmans-Wigmans Stichting, Erasmus Medical Center, ZonMw-Memorabel programme, EU Joint Programme Neurodegenerative Disease Research (JPND), Parkinson's UK, Avtal om Läkarutbildning och Forskning (ALF) and Parkinsonfonden (Sweden), Lijf and Leven foundation, and cross-border grant of Alzheimer Netherlands-Ligue Européene Contre la Maladie d'Alzheimer (LECMA).


Assuntos
Proteínas Relacionadas a Receptor de LDL/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Encéfalo/patologia , Cromossomos Humanos Par 14/genética , Demência/epidemiologia , Demência/etiologia , Demência/genética , Família , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Itália , Doença por Corpos de Lewy/epidemiologia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Linhagem , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
10.
Cell Cycle ; 13(16): 2600-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486200

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of premutation forms of the FMR1 gene, resulting in a progressive development of tremor, ataxia and neuropsychological problems. The disease is caused by an expanded CGG repeat in the FMR1 gene, leading to an RNA gain-of-function toxicity mechanism. In order to study the pathogenesis of FXTAS, new inducible transgenic mouse models have been developed that expresses either 11CGGs or 90CGGs at the RNA level under control of a Tet-On promoter. When bred to an hnRNP-rtTA driver line, doxycycline (dox) induced expression of the transgene could be found in almost all tissues. Dox exposure resulted in loss of weight and death within 5 d for the 90CGG RNA expressing mice. Immunohistochemical examination of tissues of these mice revealed steatosis and apoptosis in the liver. Decreased expression of GPX1 and increased expression of cytochrome C is found. These effects were not seen in mice expressing a normal sized 11CGG repeat. In conclusion, we were able to show in vivo that expression of an expanded CGG-repeat rather than overexpression of a normal CGG-repeat causes pathology. In addition, we have shown that expanded CGG RNA expression can cause mitochondrial dysfunction by regulating expression levels of several markers. Although FTXAS patients do not display liver abnormalities, our findings contribute to understanding of the molecular mechanisms underlying toxicity of CGG repeat RNA expression in an animal model. In addition, the dox inducible mouse lines offer new opportunities to study therapeutic interventions for FXTAS.


Assuntos
Ataxia/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitocôndrias/metabolismo , RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Tremor/metabolismo , Animais , Antibacterianos/metabolismo , Apoptose/efeitos dos fármacos , Ataxia/genética , Modelos Animais de Doenças , Doxiciclina/metabolismo , Fígado Gorduroso/patologia , Síndrome do Cromossomo X Frágil/genética , Fígado/metabolismo , Fígado/ultraestrutura , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Regiões Promotoras Genéticas , RNA/genética , Espécies Reativas de Oxigênio , Tremor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA