Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Lasers Surg Med ; 50(5): 506-512, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29737551

RESUMO

BACKGROUND AND OBJECTIVES: In this study, we evaluated the impact of hyperthermia in photosensitizing efficacy of 3-[(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH or Photochlor) for the treatment of cancer by photodynamic therapy (PDT). STUDY DESIGN/MATERIALS AND METHODS: The outcome of both whole body hyperthermia (WBH) and local hyperthermia (LH) in combination with HPPH-PDT was determined in BALB/c and nude mice bearing Colon26 and U87 tumors, respectively. LH was performed by using an indigenously designed heating device, that was heated to the required temperature using a circulating water bath. The device which has flexible membrane on one side was placed on skin above the tumor. The temperature of the tumor was monitored using a thermocouple sensor placed on the surface of the tumor capable of measuring the temperature within 0.1°C. Uptake of the photosensitizer in tumors was determined by fluorescence using an IVIS or a Nuance Imaging System. The PDT was performed by exposing the tumors to 665 nm laser loght, (135 J/cm2 , 75 mW/cm2 ) at the maximal uptake time of HPPH. Tumor size was measured daily using vernier calipers. RESULTS: The improved PDT efficacy (long-term percentage tumor cure) in combination with hyperthermia is possible due to an increase in tumor-uptake of the photosensitizer (PS), confirmed by in vivo fluorescence imaging and also by increased tumor perfusion and decreased hypoxia as have been reported previously (Sen et al. [2011] Cancer Res. 71:3872-3880 In Vivo. 20:689-695). Interestingly, compared to whole body hyperthermia, the 14 C- HPPH biodistribution data under local hyperthermia showed similar tumor-uptake in BALB/c mice bearing Colon26 tumors, but significantly lower uptake in other organs and in the blood. CONCLUSION: Our study demonstrates that both, fever range whole body and local hyperthermia in combination with HPPH-PDT enhances the long-term tumor cure of BALB/c and nude mice implanted with Colon26 and U87 tumors respectively. Lasers Surg. Med. 50:506-512, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Clorofila/análogos & derivados , Neoplasias do Colo/terapia , Hipertermia Induzida/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Clorofila/farmacologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
2.
Molecules ; 23(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042350

RESUMO

Photodynamic therapy (PDT) of cancer is dependent on three primary components: photosensitizer (PS), light and oxygen. Because these components are interdependent and vary during the dynamic process of PDT, assessing PDT efficacy may not be trivial. Therefore, it has become necessary to develop pre-treatment planning, on-line monitoring and dosimetry strategies during PDT, which become more critical for two or more chromophore systems, for example, PS-CD (Photosensitizer-Cyanine dye) conjugates developed in our laboratory for fluorescence-imaging and PDT of cancer. In this study, we observed a significant impact of variable light dosimetry; (i) high light fluence and fluence rate (light dose: 135 J/cm², fluence rate: 75 mW/cm²) and (ii) low light fluence and fluence rate (128 J/cm² and 14 mW/cm² and 128 J/cm² and 7 mW/cm²) in photobleaching of the individual chromophores of PS-CD conjugates and their long-term tumor response. The fluorescence at the near-infrared (NIR) region of the PS-NIR fluorophore conjugate was assessed intermittently via fluorescence imaging. The loss of fluorescence, photobleaching, caused by singlet oxygen from the PS was mapped continuously during PDT. The tumor responses (BALB/c mice bearing Colon26 tumors) were assessed after PDT by measuring tumor sizes daily. Our results showed distinctive photobleaching kinetics rates between the PS and CD. Interestingly, compared to higher light fluence, the tumors exposed at low light fluence showed reduced photobleaching and enhanced long-term PDT efficacy. The presence of NIR fluorophore in PS-CD conjugates provides an opportunity of fluorescence imaging and monitoring the photobleaching rate of the CD moiety for large and deeply seated tumors and assessing PDT tumor response in real-time.


Assuntos
Clorofila/análogos & derivados , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Glicoconjugados/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Radiometria/métodos , Animais , Carbocianinas/química , Carbocianinas/farmacocinética , Clorofila/síntese química , Clorofila/farmacologia , Neoplasias do Colo/patologia , Relação Dose-Resposta à Radiação , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Glicoconjugados/síntese química , Indóis/química , Indóis/farmacocinética , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica/métodos , Fotodegradação , Fotoquimioterapia/instrumentação , Fármacos Fotossensibilizantes/síntese química , Propionatos/química , Propionatos/farmacocinética , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Espectrometria de Fluorescência/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Bioconjug Chem ; 27(3): 667-80, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26735143

RESUMO

Herein we report the syntheses and comparative photophysical, electrochemical, in vitro, and in vivo biological efficacy of 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-cyanine dye (HPPH-CD) and the corresponding indium (In), gallium (Ga), and palladium (Pd) conjugates. The insertion of a heavy metal in the HPPH moiety makes a significant difference in FRET (Förster resonance energy transfer) and electrochemical properties, which correlates with singlet oxygen production [a key cytotoxic agent for photodynamic therapy (PDT)] and long-term in vivo PDT efficacy. Among the metalated analogs, the In(III) HPPH-CD showed the best cancer imaging and PDT efficacy. Interestingly, in contrast to free base HPPH-CD, which requires a significantly higher therapeutic dose (2.5 µmol/kg) than imaging dose (0.3 µmol/kg), the corresponding In(III) HPPH-CD showed excellent imaging and therapeutic potential at a remarkably low dose (0.3 µmol/kg) in BALB/c mice bearing Colon26 tumors. A comparative study of metalated and corresponding nonmetalated conjugates further confirmed that STAT-3 dimerization can be used as a biomarker for determining the level of photoreaction and tumor response.


Assuntos
Metais/química , Neoplasias Experimentais/patologia , Fotoquimioterapia , Porfirinas/química , Animais , Transferência Ressonante de Energia de Fluorescência , Camundongos , Espectrofotometria Ultravioleta
4.
Bioorg Med Chem ; 23(13): 3603-17, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936263

RESUMO

We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Clorofila/análogos & derivados , Neoplasias do Colo/radioterapia , Neoplasias Pulmonares/radioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Transporte Biológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/ultraestrutura , Linhagem Celular Tumoral , Clorofila/síntese química , Clorofila/química , Clorofila/farmacologia , Clorofila A , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Radioisótopos do Iodo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Imagem Molecular/métodos , Transplante de Neoplasias , Especificidade de Órgãos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Spirulina/química , Estereoisomerismo , Carga Tumoral/efeitos dos fármacos
5.
Chemistry ; 19(21): 6670-84, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23526622

RESUMO

We report herein a simple and efficient approach to the synthesis of a variety of meso-substituted purpurinimides. The reaction of meso-substituted purpurinimide with N-bromosuccinimide regioselectively introduced a bromo functionality at the 20-position, which on further reaction with a variety of boronic acids under Suzuki reaction conditions yielded the corresponding meso-substituted analogues. Interestingly, the free base and the metalated analogues showed remarkable differences in photosensitizing efficacy (PDT) and tumor-imaging ability. For example, the free-base conjugate showed significant in vitro PDT efficacy, but limited tumor avidity in mice bearing tumors, whereas the corresponding Ni(II) derivative did not produce any cell kill, but showed excellent tumor-imaging ability at a dose of 0.3 µmol kg(-1) at 24, 48, and 72 h post-injection. The limited PDT efficacy of the Ni(II) analogue could be due to its inability to produce singlet oxygen, a key cytotoxic agent required for cell kill in PDT. Based on electrochemical and spectroelectrochemical data in DMSO, the first one-electron oxidation (0.52 V vs. SCE) and the first one-electron reduction (-0.57-0.67 V vs. SCE) of both the free base and the corresponding Ni(II) conjugates are centered on the cyanine dye, whereas the second one-electron reduction (-0.81 V vs. SCE) of the two conjugates is assigned to the purpurinimide part of the molecule. Reduction of the cyanine dye unit is facile and occurs prior to reduction of the purpurinimide group, which suggests that the cyanine dye unit as an oxidant could be the driving force for quenching of the excited triplet state of the molecules. An interaction between the cyanine dye and the purpurinimide group is clearly observed in the free-base conjugate, which compares with a negligible interaction between the two functional groups in the Ni(II) conjugate. As a result, the larger HOMO-LUMO gap of the free-base conjugate and the corresponding smaller quenching constant is a reason to decrease the intramolecular quenching process and increase the production of singlet oxygen to some degree.


Assuntos
Carbocianinas/síntese química , Níquel/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Animais , Bromosuccinimida/química , Carbocianinas/química , Fluorescência , Camundongos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Imagem Óptica , Oxirredução , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Oxigênio Singlete/química , Estereoisomerismo , Relação Estrutura-Atividade
6.
Nanomedicine ; 8(6): 941-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22115602

RESUMO

We report a novel post-loading approach for constructing a multifunctional biodegradable polyacrylamide (PAA) nanoplatform for tumor-imaging (fluorescence) and photodynamic therapy (PDT). This approach provides an opportunity to post-load the imaging and therapeutic agents at desired concentrations. Among the PAA nanoparticles, a formulation containing the photosensitizer, HPPH [3-(1'-hexyloxyethyl)pyropheophorbide-a], and the cyanine dye in a ratio of 2:1 minimized the undesirable quenching of the HPPH electronic excitation energy because of energy migration within the nanoparticles and/or Förster (fluorescence) resonance energy transfer (FRET) between HPPH and cyanine dye. An excellent tumor-imaging (NIR fluorescence) and phototherapeutic efficacy of the nanoconstruct formulation is demonstrated. Under similar treatment parameters the HPPH in 1% Tween 80/5% aqueous dextrose formulation was less effective than the nanoconstruct containing HPPH and cyanine dye in a ratio of 2 to 1. This is the first example showing the use of the post-loading approach in developing a nanoconstructs for tumor-imaging and therapy.


Assuntos
Resinas Acrílicas/síntese química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Corantes Fluorescentes , Nanocápsulas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Meios de Contraste/uso terapêutico , Difusão , Corantes Fluorescentes/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Resultado do Tratamento
7.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453607

RESUMO

We have previously shown that a radioactive (123I)-analog of methyl 3-(1'-(iodobexyloxy) ethyl-3-devinylpyropheophorbide-a (PET-ONCO), derived from chlorophyll-a can be used for positron emission tomography (PET) imaging of a variety of tumors, including those where 18F-FDG shows limitations. In this study, the photodynamic therapy (PDT) efficacy of the corresponding non-radioactive photosensitizer (PS) was investigated in a variety of tumor types (NSCLC, SCC, adenocarcinoma) derived from lung cancer patients in mice tumor models. The in vitro and in vivo efficacy was also investigated in combination with doxorubicin, and a significantly enhanced long-term tumor response was observed. The toxicity and toxicokinetic profile of the iodinated PS was also evaluated in male and female Sprague-Dawley rats and Beagle dog at variable doses (single intravenous injections) to assess reversibility or latency of any effects over a 28-day dose free period. The no-observed-adverse-effect (NOAEL) of the PS was considered to be 6.5 mg/kg for male and female rats, and for dogs, 3.45 mg/kg, the highest dose levels evaluated, respectively. The corresponding plasma Cmax and AYClast for male and female rats were 214,000 and 229,000 ng/mL and 3,680,000 and 3,810,000 h * ng/mL, respectively. For male and female dogs, the corresponding plasma Cmax and AYClast were 76,000 and 92,400 ng/mL and 976,000 and 1,200,000 h * ng/mL, respectively.

8.
J Med Chem ; 65(13): 9267-9280, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763292

RESUMO

3-(1'-Hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll a derivative currently undergoing human clinical trials, was conjugated with mono-, di-, and tri-Gd(III)tetraxetan (DOTA) moieties. The T1/T2 relaxivity and in vitro PDT efficacy of these conjugates were determined. The tumor specificity of the most promising conjugate was also investigated at various time points in mice and rats bearing colon tumors, as well as rabbits bearing widespread metastases from VX2 systemic arterial disseminated metastases. All the conjugates showed significant T1 and T2 relaxivities. However, the conjugate containing 3-Gd(III)-aminoethylamido-DOTA at position 17 of HPPH demonstrated great potential for tumor imaging by both MR and fluorescence while maintaining its PDT efficacy. At an MR imaging dose (10 µmol/kg), HPPH-3Gd(III)DOTA did not cause any significant organ toxicity in mice, indicating its potential as a cancer imaging (MR and fluorescence) agent with an option to treat cancer by photodynamic therapy (PDT).


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Animais , Clorofila/análogos & derivados , Clorofila/farmacologia , Clorofila A , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Compostos Heterocíclicos com 1 Anel , Humanos , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Coelhos , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36568335

RESUMO

To investigate the impact of mono- and di-ß-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which ß-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.

10.
Mol Pharm ; 8(4): 1186-97, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21702452

RESUMO

The α(v)ß(3) integrin receptor plays an important role in human metastasis and tumor-induced angiogenesis. Cyclic Arg-Gly-Asp (cRGD) peptide represents a selective α(v)ß(3) integrin ligand that has been extensively used for research, therapy, and diagnosis of neoangiogenesis. For developing photosensitizers with enhanced PDT efficacy, we here report the synthesis of a series of bifunctional agents in which the 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide a (HPPH), a chlorophyll-based photosensitizer, was conjugated to cRGD and the related analogues. The cell uptake and in vitro PDT efficacy of the conjugates were studied in α(v)ß(3) integrin overexpressing U87 and 4T1 cell lines whereas the in vivo PDT efficacy and fluorescence-imaging potential of the conjugates were compared with the corresponding nonconjugated photosensitizer HPPH in 4T1 tumors. Compared to HPPH, the HPPH-cRGD conjugate in which the arginine and aspartic acid moieties were available for binding to two subunits of α(v)ß(3) integrin showed faster clearance, enhanced tumor imaging and enhanced PDT efficacy at 2-4 h postinjection. Molecular modeling studies also confirmed that the presence of the HPPH moiety in HPPH-cRGD conjugate does not interfere with specific recognition of cRGD by α(v)ß(3) integrin. Compared to U87 and 4T1 cells the HPPH-cRGD showed significantly low photosensitizing efficacy in A431 (α(v)ß(3) negative) tumor cells, suggesting possible target specificity of the conjugate.


Assuntos
Clorofila/análogos & derivados , Oligopeptídeos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Linhagem Celular Tumoral , Clorofila/química , Clorofila/farmacocinética , Clorofila A , Cromatografia Líquida de Alta Pressão , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fotoquimioterapia
11.
J Org Chem ; 76(21): 8629-40, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21955163

RESUMO

In this report, we present a regioselective oxidation of a series bacteriochlorins, which on reacting with either ferric chloride (FeCl(3)) or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) yielded the corresponding ring-B or ring-D reduced chlorins. The effect of the number of electron-withdrawing groups present at the peripheral position, with or without a fused isocyclic ring (ring-E), did not make any significant difference in regioselective oxidation of the pyrrole rings. However, depending on the nature of substituents, the intermediate bis-dihydroxy bacteriochlorins on subjecting to pinacol-pinacolone reaction conditions gave various ketochlorins. The introduction of the keto-group at a particular position in the molecule possibly depends on the stability of the intermediate carbocation species. The newly synthesized bacteriochlorins show strong long-wavelength absorption and produced significant in vitro (Colon26 cells) photosensitizing ability. Among the compounds tested, the bacteriochlorins containing a keto-group at position 7 of ring-B with cleaved five-member isocyclic ring showed the best efficacy.


Assuntos
Compostos Férricos/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Benzoquinonas/química , Butanonas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fotoquímica , Fármacos Fotossensibilizantes/química , Porfirinas/química , Teoria Quântica , Análise Espectral , Estereoisomerismo
12.
J Med Chem ; 64(8): 4787-4809, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822622

RESUMO

To investigate the importance of the chirality and precise structure at position 3(1') of pyropheophorbide-a for tumor cell specificity and photodynamic therapy (PDT), a series of photosensitizers (PSs) was synthesized: (a) with and without chirality at position 3(1'), (b) alkyl ether chain with a variable number of chiral centers, (c) hexyl ether versus thioether side chain, and (d) methyl ester versus carboxylic acid group at position 172. The cellular uptake and specificity were defined in human lung and head/neck cancer cells. PSs without a chiral center and with an alkyl chain or thioether functionalities showed limited uptake and PDT efficacy. Replacing the methyl group at the chiral center with a propyl group or introducing an additional chiral center improved cellular retention and tumor cell specificity. Replacing the carboxylic acid with methyl ester at position 172 lowered cellular uptake and PDT efficacy. A direct correlation between the PS uptake in vitro and in vivo was identified.


Assuntos
Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/metabolismo , Animais , Clorofila/química , Clorofila/metabolismo , Clorofila/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Luz , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Solubilidade , Estereoisomerismo , Transplante Heterólogo , Células Tumorais Cultivadas
13.
J Med Chem ; 64(1): 741-767, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33400524

RESUMO

Erlotinib was covalently linked to 3-(1'-hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) and structurally related chlorins and bacteriochlorins at different positions of the tetrapyrrole ring. The functional consequence of each modification was determined by quantifying the uptake and subcellular deposition of the erlotinib conjugates, cellular response to therapeutic light treatment in tissue cultures, and in eliminating of corresponding tumors grown as a xenograft in SCID mice. The experimental human cancer models the established cell lines UMUC3 (bladder), FaDu (hypopharynx), and primary cultures of head and neck tumor cells. The effectiveness of the compounds was compared to that of HPPH. Furthermore, specific functional contribution of the carboxylic acid side group at position 172 and the chiral methyl group at 3(1') to the overall activity of the chimeric compounds was assessed. Among the conjugates investigated, the PS 10 was identified as the most effective candidate for achieving tumor cell-specific accumulation and yielding improved long-term tumor control.


Assuntos
Cloridrato de Erlotinib/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos SCID , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Estereoisomerismo , Relação Estrutura-Atividade , Taxa de Sobrevida
14.
Bioconjug Chem ; 21(5): 828-35, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20387862

RESUMO

Conjugates of 3-(1'-hexyloxyethyl)-3-devinyl pyropheophorbide-a (HPPH) with multiple Gd(III)aminobenzyl diethylenetriamine pentacetic acid (ADTPA) moieties were evaluated for tumor imaging and photodynamic therapy (PDT). In vivo studies performed in both mice and rat tumor models resulted in a significant MR signal enhancement of tumors relative to surrounding tissues at 24 h postinjection. The water-soluble (pH: 7.4) HPPH-3Gd(III) ADTPA conjugate demonstrated high potential for tumor imaging by MR and fluorescence. This agent also produced long-term tumor cures via PDT. An in vivo biodistribution study with the corresponding (14)C-analogue also showed significant tumor uptake 24 h postinjection. Toxicological evaluations of HPHH-3Gd(III)ADTPA administered at and above imaging/therapeutic doses did not show any evidence of organ toxicity. Our present study illustrates a novel approach for the development of water-soluble "multifunctional agents", demonstrating efficacy for tumor imaging (MR and fluorescence) and phototherapy.


Assuntos
Clorofila/análogos & derivados , Gadolínio/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Animais , Clorofila/química , Clorofila/uso terapêutico , Fluorescência , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Neoplasias/patologia , Fotoquimioterapia/métodos , Ratos
15.
Bioconjug Chem ; 21(5): 816-27, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20387863

RESUMO

To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.


Assuntos
Gadolínio DTPA/química , Gadolínio DTPA/farmacocinética , Neoplasias/diagnóstico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Gadolínio DTPA/síntese química , Gadolínio DTPA/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia
16.
Photochem Photobiol ; 96(3): 625-635, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31738460

RESUMO

To determine the impact of delivery vehicles in photosensitizing efficacy of HPPH, a hydrophobic photosensitizer was dissolved in various formulations: 1% Tween 80/5% dextrose, Pluronic P-123 and Pluronic F-127 in 0.5%, 1% and 2% phosphate buffer solutions (PBS). HPPH was also conjugated to Pluronic F-127, and the resulting conjugate (PL-20) was formulated in PBS. Among the different delivery vehicles, only Pluronic P-123 displayed significant vehicle cytotoxicity, whereas Pluronic F127 was nontoxic. Compared to PL-20, HPPH formulated in Tween80 and Pluronic F-127 showed higher cell-uptake, but lower long-term retention in Colon26 cell compared to PL-20. The higher retention of PL-20 was similarly observed during in vivo uptake with BALB/c mice baring Ct26 tumors. In contrast to the in vitro uptake experiments, PL-20 showed slightly higher uptake compared to HPPH formulated in Tween or Pluronic-F127. A significant difference in pharmacokinetic profile was also observed between the HPPH-Pluronic formulation and PL-20. Under similar in vivo treatment parameters (drug dose 0.47 µmol kg-1 , light dose: 135 J cm-2 at 24 h post-injection of PS), HPPH formulated either in Tween or Pluronic F-127 formulation showed similar in vivo PDT efficacy (20-30% tumor cure on day 60), whereas PL-20 showed 40% tumor cure (day 60).


Assuntos
Clorofila/análogos & derivados , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Poloxâmero/administração & dosagem , Animais , Linhagem Celular Tumoral , Clorofila/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
17.
ChemMedChem ; 15(21): 2058-2070, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32916033

RESUMO

3-(1'-Hexyloxyethyl)-3-devinyl-pyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll-a derivative currently undergoing human clinical trials, was conjugated at various peripheral positions (position-17 or 20) of HPPH with either Gd(III)-aminobenzyl-DTPA (Gd(III) DTPA) or Gd(III)-aminoethylamido-DOTA (Gd(III) DOTA). The corresponding conjugates were evaluated for in vitro PDT efficacy, T1 , T2 relaxivities, in vivo fluorescence, and MR imaging under similar treatment parameters. Among these analogs, the water-soluble Gd(III)-aminoethylamido-DOTA linked at position-17 of HPPH, i. e., HPPH-17-Gd(III) DOTA, demonstrated strong potential for tumor imaging by both MR and fluorescence, while maintaining the PDT efficacy in BALB/c mice bearing Colon-26 tumors (7/10 mice were tumor free on day 60). In contrast to Gd(III) DTPA (Magnevist) and Gd(III) DOTA (Dotarem), the HPPH-Gd(III) DOTA retains in the tumor for a long period of time (24 to 48 h) and provides an option of fluorescence-guided cancer therapy. Thus, a single agent can be used for cancer-imaging and therapy. However, further detailed pharmacokinetic, pharmacodynamic, and toxicological studies of the conjugate are required before initiating Phase I human clinical trials.


Assuntos
Antineoplásicos/farmacologia , Quelantes/farmacologia , Clorofila/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Gadolínio/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quelantes/síntese química , Quelantes/química , Clorofila/química , Clorofila/farmacologia , Neoplasias do Colo/diagnóstico por imagem , Ensaios de Seleção de Medicamentos Antitumorais , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Imagem Óptica , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
18.
Biomolecules ; 10(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317162

RESUMO

This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Nanopartículas/química , Imagem Óptica/métodos , Resinas Acrílicas/química , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carbocianinas/química , Carbocianinas/metabolismo , Linhagem Celular Tumoral , Feminino , Fibroblastos/metabolismo , Fibrossarcoma/patologia , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ácido Fólico/metabolismo , Glicoconjugados/química , Glicoconjugados/metabolismo , Xenoenxertos , Humanos , Raios Infravermelhos , Células KB , Camundongos , Camundongos Nus
19.
J Photochem Photobiol B ; 211: 111998, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32862090

RESUMO

Herein we report the positron emission tomography (PET) imaging potential of a 124I-labeled radiopharmaceutical (PET-ONCO). In tumored mice, it shows high uptake in a variety of tumors: brain (GL261, U87), Colon (Colon26), lung (Lewis lung), breast (4 T1), bladder (UMUC3), pancreas (PANC-1) implanted in mice. This agent also shows promise for imaging associated metastatic disease (breast to lung, to bone). Interestingly, the iodinated compound derived from chlorophyll-a, in combination with the corresponding 124I-analog, can serve as a dual imaging agent (PET/fluorescence, complimentary to each other), with an option of photodynamic therapy (PDT). In contrast to Fluorine-18 (half-life 110 min), the Iodine-124 radionuclide has a physical half-life of roughly 4 days. Thus, unlike 18F-FDG, PET-ONCO can be transported longer distances. While the time for optimal tumor-uptake was observed at 24 h, improved tumor contrasts of both primary and metastasis were obtained at 48 and 72 h post- injection (i. v.) of PET-ONCO. In both mice and rats at a single dose study, PET-ONCO did not show any organ toxicity.


Assuntos
Clorofila A/química , Indicadores e Reagentes/química , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Animais , Transporte Biológico , Clorofila A/metabolismo , Feminino , Radioisótopos de Flúor/química , Humanos , Radioisótopos do Iodo/química , Masculino , Camundongos Endogâmicos BALB C , Imagem Óptica , Fotoquimioterapia , Porfirinas/química , Tomografia por Emissão de Pósitrons , Ratos Sprague-Dawley , Fatores de Tempo
20.
Bioconjug Chem ; 20(2): 274-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19191565

RESUMO

Two positional isomers of purpurinimide, 3-[1'-(3-iodobenzyloxyethyl)] purpurin-18-N-hexylimide methyl ester 4, in which the iodobenzyl group is present at the top half of the molecule (position-3), and a 3-(1'-hexyloxyethy)purpurin-18-N-(3-iodo-benzylimide)] methyl ester 5, where the iodobenzyl group is introduced at the bottom half (N-substitued cyclicimide) of the molecule, were derived from chlorophyll-a. The tumor uptake and phototherapeutic abilities of these isomers were compared with the pyropheophorbide analogue 1 (lead compound). These compounds were then converted into the corresponding 124I-labeled PET imaging agents with specific activity >1 Ci/micromol. Among the positional isomers 4 and 5, purpurinimide 5 showed enhanced imaging and therapeutic potential. However, the lead compound 1 derived from pyropheophorbide-a exhibited the best PET imaging and PDT efficacy. For investigating the overall lipophilicity of the molecule, the 3-O-hexyl ether group present at position-3 of purpurinimide 5 was replaced with a methyl ether substituent, and the resulting product 10 showed improved tumor uptake, but due to its significantly higher uptake in the liver, spleen, and other organs, a poor tumor contrast in whole-body tumor imaging was observed.


Assuntos
Antraquinonas/uso terapêutico , Clorofila/uso terapêutico , Iodobenzenos/química , Fotoquimioterapia , Animais , Antraquinonas/química , Antraquinonas/farmacocinética , Clorofila/química , Clorofila/farmacocinética , Clorofila A , Radioisótopos do Iodo/química , Isomerismo , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA