Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 33(31)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35417900

RESUMO

Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ∼3 nm for AuNPs-scFvD2B and ∼19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test, and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.


Assuntos
Ouro , Nanopartículas Metálicas , Linhagem Celular Tumoral , Ouro/química , Hemólise , Humanos , Masculino , Nanopartículas Metálicas/química , Polietilenoglicóis/química
2.
ACS Appl Bio Mater ; 6(2): 819-827, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36755401

RESUMO

Despite the multitude of therapeutic agents available to treat prostate cancer (PC), there are still no effective and safe measures to treat the tumor. It remains a challenge to develop a simple approach to target PC with specific antibodies. In our study, D2B monoclonal antibodies against a prostate-specific membrane antigen (PSMA) were used. We investigated the functionalization of gold nanoparticles (AuNPs) with D2B to generate favorable physicochemical and biological properties that mediate specific binding to PC. For this purpose, AuNPs with a size of about 25 nm were synthesized in water using sodium citrate as a reducing and stabilizing agent and then coated with D2B. Major physicochemical properties of naked and D2B-coated AuNPs were investigated by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. The successful binding of D2B to AuNPs-citrate caused a 15 nm red shift in the UV-vis. This was assessed by DLS as an increase in zeta potential from ∼-45 to ∼-23 mV and in the size of AuNPs from ∼25 to ∼63 nm. Scanning electron microscopy confirmed the size shift of AuNPs, which was detected as an exterior organic layer of D2Bs surrounding each AuNP. Even at high exposure levels of the bioconjugates, PSMA-PC-3 cells exhibited minimal cytotoxicity. The specific and dose-dependent binding of AuNPs-D2B to PC-3-PSMA cells was validated by flow cytometry analysis. Our data provide effective drug delivery systems in PC theranostics.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Masculino , Humanos , Ouro/química , Excipientes/uso terapêutico , Nanopartículas Metálicas/química , Neoplasias da Próstata/tratamento farmacológico , Sistemas de Liberação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA