Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Commun Biol ; 7(1): 602, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762624

RESUMO

The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.


Assuntos
Neoplasias Encefálicas , Encéfalo , Células Endoteliais , Receptores ErbB , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Feminino , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Linhagem Celular Tumoral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Camundongos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética
2.
J Biol Chem ; 286(11): 9713-25, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21233209

RESUMO

Cyclin/cyclin-dependent kinase (CDK) complexes are critical regulators of cellular proliferation. A complex network of regulatory mechanisms has evolved to control their activity, including activating and inactivating phosphorylation of the catalytic CDK subunit and inhibition through specific regulatory proteins. Primate herpesviruses, including the oncogenic Kaposi sarcoma herpesvirus, encode cyclin D homologues. Viral cyclins have diverged from their cellular progenitor in that they elicit holoenzyme activity independent of activating phosphorylation by the CDK-activating kinase and resistant to inhibition by CDK inhibitors. Using sequence comparison and site-directed mutagenesis, we performed molecular analysis of the cellular cyclin D and the Kaposi sarcoma herpesvirus-cyclin to delineate the molecular mechanisms behind their different behavior. This provides evidence that a surface recognized for its involvement in the docking of CIP/KIP inhibitors is required and sufficient to modulate cyclin-CDK response to a range of regulatory cues, including INK4 sensitivity and CDK-activating kinase dependence. Importantly, amino acids in this region are critically linked to substrate selection, suggesting that a mutational drift in this surface simultaneously affects function and regulation. Together our work provides novel insight into the molecular mechanisms governing cyclin-CDK function and regulation and defines the biological forces that may have driven evolution of viral cyclins.


Assuntos
Ciclina D/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Evolução Molecular , Herpesvirus Humano 8/enzimologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Ciclina D/química , Ciclina D/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Análise de Sequência de Proteína , Proteínas Virais/química , Proteínas Virais/genética
3.
JCO Precis Oncol ; 6: e2100002, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35005994

RESUMO

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment of hormone-positive metastatic breast cancers (mBCs). They are currently established as standard therapies in combination with endocrine therapy as first- and second-line systemic treatment options for both endocrine-sensitive and endocrine-resistant mBC populations. In the first-line metastatic setting, the median progression-free survival for the three currently approved CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors is greater than 2 years (palbociclib 27.6 months; ribociclib 25.3 months; and abemaciclib 28.18 months). Although CDK4/6 inhibitors have significant clinical benefits and enable physicians to delay starting chemotherapy, they are expensive and can be associated with drug toxicities. Here, we have performed a systemic review of the reported molecular markers predictive of drug response including intrinsic and acquired resistance for CDK4/6 inhibition in mBC. The rapidly emerging molecular landscape is captured through next-generation sequencing of breast cancers (DNA with or without RNA), liquid biopsies (circulating tumor DNA), and protein analyses. Individual molecular candidates with robust and reliable evidence are discussed in more depth.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Piperazinas/uso terapêutico , Purinas/uso terapêutico , Piridinas/uso terapêutico , Feminino , Humanos , Prognóstico
4.
Sci Rep ; 11(1): 21506, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728711

RESUMO

Cellular senescence is a stable cell cycle arrest that normal cells undergo after a finite number of divisions, in response to a variety of intrinsic and extrinsic stimuli. Although senescence is largely established and maintained by the p53/p21WAF1/CIP1 and pRB/p16INK4A tumour suppressor pathways, the downstream targets responsible for the stability of the growth arrest are not known. We have employed a stable senescence bypass assay in conditionally immortalised human breast fibroblasts (CL3EcoR) to investigate the role of the DREAM complex and its associated components in senescence. DREAM is a multi-subunit complex comprised of the MuvB core, containing LIN9, LIN37, LIN52, LIN54, and RBBP4, that when bound to p130, an RB1 like protein, and E2F4 inhibits cell cycle-dependent gene expression thereby arresting cell division. Phosphorylation of LIN52 at Serine 28 is required for DREAM assembly. Re-entry into the cell cycle upon phosphorylation of p130 leads to disruption of the DREAM complex and the MuvB core, associating initially to B-MYB and later to FOXM1 to form MMB and MMB-FOXM1 complexes respectively. Here we report that simultaneous expression of MMB-FOXM1 complex components efficiently bypasses senescence with LIN52, B-MYB, and FOXM1 as the crucial components. Moreover, bypass of senescence requires non-phosphorylated LIN52 that disrupts the DREAM complex, thereby indicating a central role for assembly of the DREAM complex in senescence.


Assuntos
Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Regulação da Expressão Gênica , Complexos Multiproteicos/metabolismo , Transativadores/metabolismo , Mama/citologia , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Feminino , Fibroblastos/citologia , Proteína Forkhead Box M1/genética , Humanos , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Complexos Multiproteicos/genética , Fosforilação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transativadores/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
5.
Nat Commun ; 12(1): 7064, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862364

RESUMO

Loss-of-function mutations in the RB1 tumour suppressor are key drivers in cancer, including osteosarcoma. RB1 loss-of-function compromises genome-maintenance and hence could yield vulnerability to therapeutics targeting such processes. Here we demonstrate selective hypersensitivity to clinically-approved inhibitors of Poly-ADP-Polymerase1,2 inhibitors (PARPi) in RB1-defective cancer cells, including an extended panel of osteosarcoma-derived lines. PARPi treatment results in extensive cell death in RB1-defective backgrounds and prolongs survival of mice carrying human RB1-defective osteosarcoma grafts. PARPi sensitivity is not associated with canonical homologous recombination defect (HRd) signatures that predict PARPi sensitivity in cancers with BRCA1,2 loss, but is accompanied by rapid activation of DNA replication checkpoint signalling, and active DNA replication is a prerequisite for sensitivity. Importantly, sensitivity in backgrounds with natural or engineered RB1 loss surpasses that seen in BRCA-mutated backgrounds where PARPi have established clinical benefit. Our work provides evidence that PARPi sensitivity extends beyond cancers identifiable by HRd and advocates PARP1,2 inhibition as a personalised strategy for RB1-mutated osteosarcoma and other cancers.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Osteossarcoma/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Camundongos , Osteossarcoma/genética , Osteossarcoma/patologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo de DNA por Recombinação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioessays ; 30(10): 926-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18798540

RESUMO

The expression of protein-encoding genes is a complex process culminating in the production of mature mRNA and its translation by the ribosomes. The production of a mature mRNA involves an intricate series of processing steps. The majority of eukaryotic protein-encoding genes contain intron sequences that disrupt the protein-encoding frame, and hence have to be removed from immature mRNA prior to translation into protein. The mechanism involved in the selection of correct splice sites is incompletely understood. A considerable body of evidence suggests that the splicing machinery has suboptimal efficiency and fidelity leading to substantial processing inaccuracy. Here we discuss a recently published article that extends observations that cells rely on nonsense-mediated mRNA decay (NMD) to compensate for such suboptimal processing accuracy. Intriguingly these authors provide evidence for a strong selective pressure in favour of premature termination of mRNA translation in the event of intron retention. The analysis presented implies a positive role of NMD in transcript diversification through alternative splicing and suggest that this ancient surveillance mechanism may have co-evolved with intron acquisition born from the need for quality control of splicing patterns.


Assuntos
Códon sem Sentido , Genoma , Splicing de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , Evolução Molecular , Íntrons/genética , Biossíntese de Proteínas/genética , Seleção Genética
7.
ACS Pharmacol Transl Sci ; 3(6): 1253-1264, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33344901

RESUMO

To avoid replicative senescence or telomere-induced apoptosis, cancers employ telomere maintenance mechanisms (TMMs) involving either the upregulation of telomerase or the acquisition of recombination-based alternative telomere lengthening (ALT). The choice of TMM may differentially influence cancer evolution and be exploitable in targeted therapies. Here, we examine TMMs in a panel of 17 osteosarcoma-derived cell lines, defining three separate groups according to TMM and the length of telomeres maintained. Eight were ALT-positive, including the previously uncharacterized lines, KPD and LM7. While ALT-positive lines all showed excessive telomere length, ALT-negative cell lines fell into two groups according to their telomere length: HOS-MNNG, OHSN, SJSA-1, HAL, 143b, and HOS displayed subnormally short telomere length, while MG-63, MHM, and HuO-3N1 displayed long telomeres. Hence, we further subcategorized ALT-negative TMM into long-telomere (LT) and short-telomere (ST) maintenance groups. Importantly, subnormally short telomeres were significantly associated with hypersensitivity to three different therapeutics targeting the protein kinase ataxia telangiectasia and Rad3-related (ATR) (AZD-6738/Ceralasertib, VE-822/Berzoserib, and BAY-1895344) compared to long telomeres maintained via ALT or telomerase. Within 24 h of ATR inhibition, cells with short but not long telomeres displayed chromosome bridges and underwent cell death, indicating a selective dependency on ATR for chromosome stability. Collectively, our work provides a resource to identify links between the mode of telomere maintenance and drug sensitivity in osteosarcoma and indicates that telomere length predicts ATR inhibitor sensitivity in cancer.

9.
Oncogene ; 38(30): 5905-5920, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31296956

RESUMO

Deregulation of cyclin-dependent kinases 4 and 6 (CDK4/6) is highly prevalent in cancer; yet, inhibitors against these kinases are currently used only in restricted tumour contexts. The extent to which cancers depend on CDK4/6 and the mechanisms that may undermine such dependency are poorly understood. Here, we report that signalling engaging the MET proto-oncogene receptor tyrosine kinase/focal adhesion kinase (FAK) axis leads to CDK4/6-independent CDK2 activation, involving as critical mechanistic events loss of the CDKI p21CIP1 and gain of its regulator, the ubiquitin ligase subunit SKP2. Combined inhibition of MET/FAK and CDK4/6 eliminates the proliferation capacity of cancer cells in culture, and enhances tumour growth inhibition in vivo. Activation of the MET/FAK axis is known to arise through cancer extrinsic and intrinsic cues. Our work predicts that such cues support cell division independent of the activity of the cell cycle-regulating CDK4/6 kinases and identifies MET/FAK as a tractable route to broaden the utility of CDK4/6 inhibitor-based therapies in the clinic.


Assuntos
Ciclo Celular , Divisão Celular , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Células A549 , Animais , Biomarcadores Tumorais/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Xenoenxertos , Humanos , Camundongos , Proto-Oncogene Mas
10.
Hum Mutat ; 28(2): 159-67, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16988938

RESUMO

Hereditary predisposition to retinoblastoma (RB) is caused by germline mutations in the retinoblastoma 1 (RB1) gene and transmits as an autosomal dominant trait. In the majority of cases disease develops in greater than 90% of carriers. However, reduced penetrance with a large portion of disease-free carrier is seen in some families. Unambiguous identification of the predisposing mutation in these families is important for accurate risk prediction in relatives and their genetic counseling but also provides conceptual information regarding the relationship between the RB1 genotype and the disease phenotype. In this study we report a novel mutation detected in 10 individuals of an extended family, only three of whom are affected by RB disease. The mutation comprises a 23-basepair (bp) duplication in the first exon of RB1 (c.43_65dup) producing a frameshift in exon 1 and premature chain termination in exon 2. Mutations resulting in premature chain termination classically are associated with high penetrance disease, as message translation may not generate functional product and nonsense mediated RNA decay (NMD) frequently eliminates the mutant transcript. However, appreciable NMD does not follow from the mutation described here and transcript expression in tissue culture cells and translation in vitro reveals that alternative in-frame translation start sites involving Met113 and possibly Met233 are used to generate truncated RB1 products (pRB94 and pRB80), known and suspected to exhibit tumor suppressor activity. These results strongly suggest that modulation of disease penetrance in this family is achieved by internal translation initiation. Our observations provide the first example for rescue of a chain-terminating mutation in RB1 through alternative translation initiation.


Assuntos
Mutação da Fase de Leitura , Fenótipo , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Processamento Alternativo , Sequência de Aminoácidos , Criança , Códon sem Sentido , Análise Mutacional de DNA , Éxons , Feminino , Predisposição Genética para Doença , Genótipo , Proteínas de Fluorescência Verde/análise , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Penetrância , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Retinoblastoma/diagnóstico , Proteína do Retinoblastoma/análise , Proteína do Retinoblastoma/química
11.
Methods Mol Biol ; 1636: 133-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28730478

RESUMO

High-content imaging connects the information-rich method of microscopy with the systematic objective principles of software-driven analysis. Suited to automation and, therefore, considerable scale-up of study size, this approach can deliver multiparametric data over cell populations or at the level of the individual cell and has found considerable utility in reverse genetic and pharmacological screens. Here we present a method to screen small interfering RNA (siRNA) libraries allowing subsequent observation of the impact of each knockdown on two interlinked, high-content, G1-/S-phase cell cycle transition assays related to cyclin-dependent kinase (CDK) 2 activity. We show how plasticity within the network governing the activity of this kinase can be detected by combining modifier siRNAs with a siRNA library. The method uses fluorescent immunostaining of a nuclear antigen, CyclinA, following cell fixation while also preserving the fluorescence of a stably expressed fluorescent protein-tagged reporter for CDK2 activity. We provide methodology for data extraction and handling including an R-script that converts the multidimensional data into four simple binary outcomes, on which a hit-mining strategy can be built. The workflow described can in principle be adopted to yield quantitative single-cell-resolved data and mining for outcomes relating to a broad range of other similar readouts and signaling contexts.


Assuntos
Ensaios de Triagem em Larga Escala , Imagem Molecular , Fosfotransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Imunofluorescência , Biblioteca Gênica , Humanos , Microscopia Confocal , Análise de Célula Única/métodos , Software
12.
Cancer Cell Int ; 6: 3, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16466572

RESUMO

BACKGROUND: The product of the retinoblastoma-susceptibility gene (pRb) is a substrate for Protein Phosphatase 1 (PP1). At mitotic exit, all three PP1 isoforms, alpha, gamma1 and delta, bind to pRb and dephosphorylate its Ser/Thr sites in a sequential and site-specific way. The pRb-C terminal has been reported to be necessary and sufficient for PP1alpha binding. The present study investigated whether the three PP1 isoforms from mitotic or asynchronous HeLa cells associate differentially with wild-type and pRb mutants, as well as the holoenzyme composition of the pRb-directed PP1. RESULTS: The requirement for the entire pRb molecule to achieve optimal PP1-binding was indicated by the fact that full-length pRb displayed the highest affinity for all three PP1 isoforms. Ser/Thr-to-Ala substitution for up to 14 pRb sites did not affect the ability of pRb to bind the PP1 isoforms derived from mitotic or asynchronous HeLa cells, thus suggesting that the phosphate-accepting residues on pRb do not regulate the interaction with PP1. To probe for the presence of PP1 targeting subunits in the pRb-directed PP1 complex, PP1 from mitotic or asynchronous HeLa cells was isolated by affinity chromatography on GST-Rb (either full-length or its deletion mutants Rb-big pocket or Rb-C-terminal). The PP1 was always obtained as free catalytic subunit, displaying all three isoforms, thus suggesting direct interaction between pRb and PP1. The direct association was confirmed by the ability of pRb to pull-down purified PP1 catalytic subunits and by in vitro reconstitution of a complex between PP1 catalytic subunit and the pRb-C-terminal. CONCLUSION: The work indicated that the full length of the pRb molecule is required for optimal interaction with the PP1 isoforms and that the association between pRb and PP1 isoforms is direct.

13.
Mol Cell Oncol ; 3(2): e1053596, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308588

RESUMO

Loss of retinoblastoma protein (RB1) function is a major driver in cancer development. We have recently reported that, in addition to its well-documented functions in cell cycle and fate control, RB1 and its paralogs have a novel role in regulating DNA repair by non-homologous end joining (NHEJ). Here we summarize our findings and present mechanistic hypotheses on how RB1 may support the DNA repair process and the therapeutic implications for patients who harbor RB1-negative cancers.

14.
Oncogene ; 21(12): 1823-31, 2002 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-11896614

RESUMO

The Kaposi's Sarcoma associated Herpes virus (KSHV) encodes two genes with the potential to affect the activity of the retinoblastoma protein (Rb). Open reading frame (orf) 72 encodes a D type cyclin (kcyc) that can elicit p16INK4a resistant cdk activity and orf73 encodes the latency associated nuclear antigen (LNA) that can bind Rb and neutralize E2F regulation. This indicates that, like papilloma and adenovirus associated malignancies, those associated with KSHV are defective with respect to their Rb pathway. To address this we investigated whether KSHV associated primary effusion lymphoma (PEL) derived cell lines are resistant to growth inhibition by p16INK4a. We provide evidence that ectopic expression of p16INK4a in these cells causes an Rb dependent G1 cell cycle block. Importantly, endogenous p16INK4a expression is not detected in six PEL derived cell lines and four primary PEL samples and examination of the p16INK4a locus shows deletion in two out of six and hypermethylation in four out of six PEL lines. Treatment of the latter with the demethylating agent 5'-aza-2' deoxycytidine leads to re-expression of p16INK4a protein. Taken together these results suggest that p16INK4a loss may be a cellular change frequently associated with PEL. They furthermore argue that despite the presence of KSHV DNA and expression of a latent gene program Rb function is intact in PEL.


Assuntos
Azacitidina/análogos & derivados , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Herpesvirus Humano 8/fisiologia , Linfoma de Células B/metabolismo , Proteína do Retinoblastoma/metabolismo , Sarcoma de Kaposi/metabolismo , Adenoviridae/genética , Azacitidina/farmacologia , Western Blotting , Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/metabolismo , Metilação de DNA , Primers do DNA/química , Decitabina , Regulação para Baixo , Deleção de Genes , Herpesvirus Humano 8/efeitos dos fármacos , Humanos , Linfoma de Células B/genética , Linfoma de Células B/virologia , Mutação , Reação em Cadeia da Polimerase , RNA Neoplásico/metabolismo , Proteína do Retinoblastoma/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas
15.
Hum Mutat ; 25(2): 223, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15643604

RESUMO

Hereditary predisposition to retinoblastoma is caused by germ line mutations in the RB1 gene. Genetic counseling of affected individuals and accurate risk prediction for their families requires identification of the disease causing mutation. Furthermore, the nature of a mutation can determine genetic penetrance, disease presentation and prognosis. We describe, and functionally characterize here, a novel mutant allele of RB1 present in the germ line of a patient with sporadic bilateral retinoblastoma. The mutation generates an operational splice acceptor site resulting in a predicted protein product with loss of 81 amino acids from its carboxy terminus. We demonstrate that the aberrantly spliced transcript is present in substantial amounts in peripheral blood of the patient and present evidence that the predicted protein product displays partial loss of activity reflecting in degree and presentation that of the partially penetrant RB1 missense mutant R661W. This infers that disease with reduced expressivity and incomplete penetrance may arise in individuals that carry the mutation and predicts such presentation for similar mutations with found in sporadic cases in the past.


Assuntos
Genes do Retinoblastoma , Mutação , Splicing de RNA , Neoplasias da Retina/genética , Retinoblastoma/genética , Adulto , Análise Mutacional de DNA , Humanos , Íntrons , Masculino , Linhagem , Neoplasias da Retina/diagnóstico , Retinoblastoma/diagnóstico , Proteína do Retinoblastoma/metabolismo
16.
Eur J Cell Biol ; 84(2-3): 97-107, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15819393

RESUMO

The retinoblastoma tumour suppressor protein (Rb) has come a long way since its initial discovery in 1986. Encoded by the first candidate tumour suppressor gene it has emerged a versatile and context-dependent modulator of cell behaviour. Its activity is managed by signalling networks sensing intra- and extracellular cues. These cues are relayed to hold or permit inactivation of Rb by phosphorylation. Loss or mutation of the retinoblastoma gene is rare in sporadic cancers but defects in the pathways that license inactivation of Rb are found in the majority of them, suggesting that loss of Rb control is central to tumour development and arguing that its reinstatement might reverse tumour formation. Furthermore, mouse models with engineered defects in the Rb-phosphorylating kinases provide evidence that moderation of Rb inactivation may be a strategy for the prevention of tumour formation. The rationale behind these arguments, their underlying molecular concepts and strategies towards therapeutic application will be discussed.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/fisiologia , Animais , Humanos , Camundongos , Neoplasias/terapia
17.
Cell Rep ; 10(12): 2006-18, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25818292

RESUMO

Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1's cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.


Assuntos
Antígenos Nucleares/metabolismo , Reparo do DNA por Junção de Extremidades/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Proteína do Retinoblastoma/metabolismo , Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Humanos , Autoantígeno Ku , Recombinação Genética/genética , Proteínas Supressoras de Tumor/metabolismo
18.
J Vis Exp ; (94)2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25549286

RESUMO

Advances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy. These assays potentially generate large numbers of images of fluorescent biomarkers, which enabled by accompanying proprietary software packages, allows for multi-parametric measurements per cell. However, the relatively high capital costs and overspecialization of many of these devices have prevented their accessibility to many investigators. Described here is a universally applicable workflow for the quantification of multiple fluorescent marker intensities from specific subcellular regions of individual cells suitable for use with images from most fluorescent microscopes. Key to this workflow is the implementation of the freely available Cell Profiler software(1) to distinguish individual cells in these images, segment them into defined subcellular regions and deliver fluorescence marker intensity values specific to these regions. The extraction of individual cell intensity values from image data is the central purpose of this workflow and will be illustrated with the analysis of control data from a siRNA screen for G1 checkpoint regulators in adherent human cells. However, the workflow presented here can be applied to analysis of data from other means of cell perturbation (e.g., compound screens) and other forms of fluorescence based cellular markers and thus should be useful for a wide range of laboratories.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Análise de Célula Única/métodos , Software , Biomarcadores/análise , Técnicas de Cultura de Células , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/análise , Humanos , Microscopia de Fluorescência/métodos , Fluxo de Trabalho
19.
PLoS One ; 8(3): e58463, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516486

RESUMO

The retinoblastoma susceptibility protein RB1 is a key regulator of cell proliferation and fate. RB1 operates through nucleating the formation of multi-component protein complexes involved in the regulation of gene transcription, chromatin structure and protein stability. Phosphorylation of RB1 by cyclin-dependent kinases leads to conformational alterations and inactivates the capability of RB1 to bind partner protein. Using small angle X-ray scattering in combination with single particle analysis of transmission electron microscope images of negative-stained material we present the first three-dimensional reconstruction of non-phosphorylated RB1 revealing an extended architecture and deduce the domain arrangement within the molecule. Phosphorylation results in an overt alteration of the molecular shape and dimensions, consistent with the transition to a compact globular architecture. The work presented provides what is to our knowledge the first description of the relative domain arrangement in active RB1 and predicts the molecular movement that leads to RB1 inactivation following protein phosphorylation.


Assuntos
Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Espalhamento a Baixo Ângulo
20.
J Natl Cancer Inst ; 104(12): 941-52, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22556269

RESUMO

BACKGROUND: The tripartite motif family protein 27 (TRIM27) is a transcriptional repressor that interacts with, and attenuates senescence induction by, the retinoblastoma-associated protein (RB1). High expression of TRIM27 was noted in several human cancer types including breast and endometrial cancer, where elevated TRIM27 expression predicts poor prognosis. Here, we investigated the role of TRIM27 expression in cancer development. METHODS: We assessed TRIM27 expression in human cancer using cancer profiling arrays containing paired tumor and normal cRNA (n = 261) as well as in murine skin cancer induced by 7, 12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). We generated mice with disrupted expression of murine TRIM27 (Trim27(-/-)) and assessed their susceptibility to DMBA/TPA-induced skin tumor development compared with isogenic littermates (n = 26 mice per group). We assessed the effect of Trim27 loss on senescence propensity in mouse embryonic fibroblasts (MEFs) by quantifying cell proliferation alongside senescence markers (senescence-associated ß-galactosidase [SA-ß-gal] activity and hypertrophic cell morphology). The contribution of RB1 on senescence and cancer susceptibility (n > 20 mice per group) in Trim27(-/-) backgrounds was also assessed. Data were analyzed using the Student's t, χ(2), or log-rank test as indicated. All statistical tests were two-sided. RESULTS: TRIM27 transcript levels are statistically significantly increased in common human cancers, including colon and lung, vs normal tissues (TRIM27 expression relative to ubiquitin: cancers vs normal tissues, mean = 0.59, 95% confidence interval [CI] = 0.55 to 0.63 vs mean = 0.46, 95% CI =0.43 to 0.49, P < .001) as well as in chemically induced mouse skin cancer compared with matched normal tissue (Trim27 expression relative to Gapdh control: tumor vs normal skin, mean = 4.2, 95% CI = 3.97 to 4.43 vs mean = 0.96, 95% CI = 0.69 to 1.2, P < .001). Trim27(-/-) mice (n = 14) were resistant to chemically induced skin cancer development (eight [57.2%] of 14 mice were tumor free) compared with Trim27(+/+) wild-type littermates (n = 13) (one [7.7%] of 13 mice was tumor free). Trim27(-/-) MEFs show enhanced senescence propensity in response to replicative (percentage of SA-ß-gal-positive cells: Trim27(+/+) MEFs vs Trim27(-/-) MEFs, mean = 14.2%, 95% CI = 11.1% to 17.4% vs mean = 53.3%, 95% CI = 48.7% to 57.9%, P < .001) or oncogenic stress (percentage of SA-ß-gal-positive cells: Trim27(+/+) MEFs + Ras vs Trim27(-/-) MEFs + Ras, mean = 24.0%, 95% CI = 19.9% to 28.1% vs mean = 37.3%, 95% CI = 32.2% to 42.4%, P < .05) compared with Trim27(+/+) MEFs. These responses were alleviated following inactivation of murine RB1 (Rb1). Furthermore, Trim27(-/-) mice are not protected from cancers arising as a consequence of Rb1 deletion (median survival: Trim27(-/-)Rb(+/-) vs Trim27(+/+)Rb(+/-), 14 vs 13 months; difference = 1.0 month, 95% CI = 0.5 to 1.6 months, P = .14). CONCLUSION: TRIM27 expression is a modifier of disease incidence and progression relevant to the development of common human cancers and is a potential target for intervention in cancer.


Assuntos
Proliferação de Células , Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/metabolismo , Fatores de Confusão Epidemiológicos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Progressão da Doença , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Prognóstico , RNA Complementar/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Projetos de Pesquisa , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Ubiquitina-Proteína Ligases , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA