RESUMO
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Assuntos
Tubas Uterinas , Sêmen , Humanos , Masculino , Bovinos , Animais , Feminino , Camundongos , Tubas Uterinas/fisiologia , Oviductos , Hormônios Esteroides Gonadais , Útero , Imunidade , Modelos Animais , EsteroidesRESUMO
Toll-like receptor 2 (TLR2) is a major membrane-bound receptor with ligand and species specificity that activates the host immune response. Heterodimerization of TLR2 with TLR1 (TLR2/1) or TLR6 (TLR2/6), triggered by ligand binding, is essential to initiating the signaling pathway. Bovine TLR2 (bTLR2) heterodimerization has not been defined yet compared with human and mouse TLR2s (hTLR2 and mTLR2). The aim of the present study was to model bovine TLRs (TLRs 1, 2 and 6) and create the heterodimeric forms of the bovine TLR2 using molecular dynamics (MD) simulations. We compared the intermolecular interactions in bTLR2/1-PAM3 and bTLR2/6-PAM2 with the hTLR2 and mTLR2 complexes through docking simulations and subsequent MD analyses. The present computational findings showed that bTLR2 dimerization could have a biological function and activate the immune response, similar to hTLR2 and mTLR2. Agonists and antagonists that are designed for hTLR2 and mTLR2 can target bTLR2. However, the experimental approaches to comparing the functional immune response of TLR2 across species were missing in the present study. This computational study provides a structural analysis of the bTLR2 interaction with bTLR1 and bTLR6 in the presence of an agonist/antagonist and reveals the three-dimensional structure of bTLR2 dimerization. The present findings could guide future experimental studies targeting bTLR2 with different ligands and lipopeptides.
Assuntos
Simulação de Dinâmica Molecular , Receptor 2 Toll-Like , Animais , Bovinos , Dimerização , Ligantes , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismoRESUMO
This in vivo study aimed to investigate local and systemic immune responses induced by sperm in cows after artificial insemination (AI). Initially, 12 multiparous Japanese Black cows were subjected to intrauterine AI (AI group, n = 6) or saline infusion (control group, n = 6). The uterine body and horn ipsilateral to the ovulatory follicle were mini-flushed with 2 ml of RPMI-1640 medium at different time points (0, 1, 6, 10, 24, 48 h, and 7 days after AI), centrifuged, and the sediments were examined under a light microscope. Vaginal smears were prepared at 0, 1, 6, and 10 h after AI to investigate the sperm backflow. Subsequently, another experiment was conducted by assigning cows to three groups: intrauterine AI (AI group, n = 5), heat-inactivated AI (Heat-AI group, n = 5), or saline infusion (control group, n = 5). Blood samples were collected, and polymorphonuclear neutrophils (PMNs) and peripheral blood mononuclear cells (PBMCs) were separated and analyzed for gene expression using real-time PCR. The results showed that most sperm were rapidly transported either forward into the uterine horn or backward into the vagina within 1 h after AI. The PMNs migrated into the uterine lumen 6 hours after AI. Only active sperm-induced proinflammatory responses in PMNs and PBMCs via upregulation of TNFa, IL8, IL1B, and PGES and downregulation of IL10 at 6 h after AI. These data provide evidence that sperm generate transient proinflammatory responses locally in the uterus and systemically in the peripheral immune cells, which may be prerequisites for uterine clearance, embryo receptivity, and implantation in cows.
Assuntos
Leucócitos Mononucleares , Sêmen , Feminino , Bovinos , Masculino , Animais , Útero/fisiologia , Espermatozoides/metabolismo , Inseminação Artificial/veterinária , Inseminação Artificial/métodosRESUMO
Previously, we reported that the presence of multiple day 7 (D7) bovine embryos in the uterus induces systemic immune responses in circulating polymorphonuclear neutrophils (PMNs), but with unknown mechanism. Thus, this study aimed to investigate the direct impact of D7 bovine embryo on PMNs' immune responses in vitro and whether these PMNs can amplify and transfer embryo signals further to another PMN population. PMNs were directly stimulated by embryo culture media (ECM) or interferon tau (IFNT) (10 ng/ml) followed by evaluating mRNA expression by real-time PCR and phenotypic analysis by flow cytometry. To test whether PMNs can transfer embryo signals to a new PMN population, PMNs triggered by ECM or IFNT, were thoroughly washed and diluted to remove any media components, and again were incubated in fresh culture media for 3 h, from which culture supernatants were collected and used as PMN conditioned media (CM) to stimulate a new PMN population. Similar to ECM, IFNT directly stimulated expressions of IFNs (IFNA, IFNG), interferon-stimulated genes (ISGs; OAS1, ISG15, MX1), STAT1, TGFB and IL8, and downregulated TNFA in PMNs. Flow cytometrical analyses demonstrated that IFNT stimulated expressions of pregnancy-related phenotypic markers, CD16 and arginase-1 (ARG1), in PMNs. Most importantly, PMN CM induced ISGs and STAT1 mRNA in fresh PMNs. Since IFNT directly upregulated IFNA expression in PMNs, the impact of IFNA on PMNs' immune responses was further tested. Stimulation of PMNs with IFNA, especially at a low level (1 pg/ml), induced IFNT-like immune responses comparable to those induced by PMN CM. Together, these findings indicated that D7 bovine embryos induce direct anti-inflammatory responses with upregulation of ISGs expressions in PMNs mainly via IFNT. Additionally, PMNs can amplify and transfer embryo signals to a new PMN population in a cell-to-cell communication mechanism possibly mediated in part by IFNA. Such a novel immunological crosstalk might contribute to embryo tolerance and pregnancy establishment in cattle.
Assuntos
Embrião de Mamíferos/imunologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Interferon Tipo I/imunologia , Neutrófilos/imunologia , Proteínas da Gravidez/imunologia , Gravidez/genética , Gravidez/imunologia , Animais , Arginase/genética , Bovinos , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata , Técnicas In Vitro , Interferon Tipo I/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fenótipo , Proteínas da Gravidez/farmacologia , Receptores de IgG/genéticaRESUMO
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are crucial for female reproductive functions. The cyclic regulation of the local GH/IGF1 axis in the oviduct and its involvement in oviductal contraction in cattle has not been investigated. Thus, the messenger RNA (mRNA) expression for GH receptor (GHR), IGF1, IGF1 receptor (IGF1R) in the whole oviducts, as well as in cultured bovine oviductal epithelial cells (BOECs) were evaluated. The GHR, IGF1, and IGF1R mRNA expression was significantly higher during postovulatory phase. The luteinizing hormone (LH), estradiol-17ß (E2), and LH + E2 treatments significantly increased GHR and IGF1 mRNA expression in cultured BOECs. Further, GH and combination of GH with LH and E2 upregulated IGF1 mRNA expression in the BOECs. Moreover, IGF1 + LH and combined IGF1 + LH + E2 treatments significantly increased prostaglandin synthesis cascade enzyme mRNA expression in the BOECs. An ex vivo microdialysis assay revealed that GH and IGF1 induced the release of oviductal contraction related prostaglandins, endothelin-1, and angiotensin II in follicular and postovulatory phases. Together, the findings strongly suggest that the presence of the active GH/IGF1 axis during the peri-ovulatory period, regulating the local system for the release of oviductal contraction related substances, which may provide the optimal oviductal environment for gametes and early embryo.
Assuntos
Células Epiteliais/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Oviductos/metabolismo , Ovulação/fisiologia , Animais , Bovinos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Fator de Crescimento Insulin-Like I/genética , Hormônio Luteinizante/farmacologia , Oviductos/citologia , Oviductos/efeitos dos fármacos , Prostaglandinas/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismoRESUMO
During the passage through the female reproductive tract, sperm interact with various compartments and their immune systems. The immune system that protects the female against pathogens also could destroy sperm or prevent them from reaching the site of fertilisation. In particular, the uterine innate immune response is crucial from the perspectives of both the sperm and the uterus. Following insemination, sperm immediately start to trigger inflammation in the uterus by entering uterine glands and activating an innate immune response. In cattle, the activation occurs mainly via TLR2 signalling, if not the only one, between sperm and the uterine epithelium lining the glands. This acute immune response is manifested as the upregulation of mRNA expression of IL8, TNFA, IL1B , and PGES . As a consequence, many sperm are trapped by polymorphonuclear neutrophils, the first and major component of innate immunity. The sperm-induced uterine innate immune responses apparently serve to clear the uterus of excess sperm and, importantly, prepare the endometrium for implantation. Pathophysiological conditions in the uterus seriously disrupt this phenomenon, and thus could directly decrease fertility.
Assuntos
Espermatozoides , Receptor 2 Toll-Like , Animais , Bovinos , Endométrio/metabolismo , Feminino , Sistema Imunitário , Imunidade Inata , Masculino , Espermatozoides/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , ÚteroRESUMO
Uterine infection with bacteria and the release of peptidoglycan (PGN), antigenic cell wall components of both Gram-negative and Gram-positive bacteria, can cause early pregnancy losses in ruminants, but the associated mechanisms remain unsolved. Day 7 blastocyst starts to secrete a minute amount of interferon-tau (IFNT) in the uterine horn which is required for early stage of maternal recognition of pregnancy (MRP) in ruminants, and it induces interferon stimulated genes (ISGs) for driving uterine receptivity in cows. This study investigated if PGN disrupts IFNT response through modulation of endometrial ISGs expressions. Cultured bovine endometrial epithelial cells (BEECs) were treated with embryo culture medium (ECM) or IFNT (1 ng/ml) in the presence or absence of a low level of PGN (10 pg/ml) for 24 h. A real-time PCR analyses revealed that the presence of PGN suppressed IFNT-induced ISGs (OAS1 and ISG15) and STAT1 expressions in BEECs. To visualize the impact of PGN in an ex-vivo model that resembles the in vivo status, endometrial explants were treated by IFNT (1 ng/ml) with or without PGN (10 pg/ml) for 12 h. PGN suppressed IFNT-induced gene expressions of the above factors, but not for IFNA receptor type1 (IFNAR1) or type2 (IFNAR2) in explants. Immunofluorescence analysis illustrated that PGN completely suppressed the IFNT-triggered OAS1 protein expression in the luminal epithelium of explants. Of note, PGN did not stimulate pro-inflammatory cytokines (TNFA and IL1B) or TLR2 mRNA expression in both models. These findings indicate that the presence of low levels of PGN suppresses ISGs expression induced by IFNT secreted from early embryo, at the luminal epithelium of the bovine endometrium. This could severely interfere with early stage of MRP processes in cows, leading to pregnancy failure.
Assuntos
Endométrio/metabolismo , Interferon Tipo I/metabolismo , Peptidoglicano/metabolismo , Proteínas da Gravidez/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Aborto Animal/imunologia , Aborto Animal/metabolismo , Aborto Animal/microbiologia , Animais , Blastocisto/imunologia , Blastocisto/metabolismo , Blastocisto/microbiologia , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/microbiologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Endométrio/imunologia , Endométrio/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Técnicas In Vitro , Interferon Tipo I/farmacologia , Troca Materno-Fetal/imunologia , Peptidoglicano/imunologia , Gravidez , Proteínas da Gravidez/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Doenças Uterinas/genética , Doenças Uterinas/metabolismo , Doenças Uterinas/veterinária , Útero/imunologia , Útero/metabolismo , Útero/microbiologiaRESUMO
We previously reported that sperm binding to cultured monolayers of bovine uterine epithelial cells induces an acute inflammatory response involving the Toll-like receptor (TLR2) signaling pathway. This response serves to clear the uterus of sperm and thereby prepares the endometrium for implantation. The endometrium is lined by surface epithelial cells; however, epithelial cells also line uterine glands. To investigate the source of the immune response, we used an explant model. Explants of bovine endometrium were incubated with bull sperm illuminated by JC1 fluorescent labeling in their mitochondria. The sperm glided over the surface epithelium until they encountered and entered uterine glands, where they remained. Scanning electron microscopy of explants revealed polymorphonuclear neutrophils (PMNs) in uterine glands along with sperm. In the absence of sperm, PMNs were not seen in glands. The incubation of sperm with explants resulted in an acute inflammatory response, seen as the upregulation of mRNA expression of IL8, TNFA, IL1B, PGES and TLR2 in whole explants, as well as increased TNFA protein expression in uterine glands. TLR1/2 antagonist reduced sperm numbers in the glands and inhibited the increase of TNFA. Our observations suggest that uterine glands serve as a site where sperm interact with the uterine epithelium to trigger the innate immune response to clear excess sperm from the uterus.
RESUMO
We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep(-) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep(-) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep(-) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.
Assuntos
Comunicação Celular/imunologia , Tubas Uterinas , Espermatozoides/metabolismo , Receptor 2 Toll-Like/fisiologia , Animais , Bovinos , Comunicação Celular/genética , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Tubas Uterinas/imunologia , Tubas Uterinas/metabolismo , Feminino , Imunidade/fisiologia , Masculino , Capacitação Espermática/fisiologia , Espermatozoides/imunologiaRESUMO
Forkhead Box L2 (FOXL2) is a member of the FOXL class of transcription factors, which are essential for ovarian differentiation and function. In the endometrium, FOXL2 is also thought to be important in cattle; however, it is not clear how its expression is regulated. The maternal recognition of pregnancy signal in cattle, interferon-Tau, does not regulate FOXL2 expression. Therefore, in the present study, we examined whether the ovarian steroid hormones that orchestrate implantation regulate FOXL2 gene expression in ruminants. In sheep, we confirmed that FOXL2 mRNA and protein was expressed in the endometrium across the oestrous cycle (day 4 to day 15 post-oestrus). Similar to the bovine endometrium, ovine FOXL2 endometrial expression was low during the luteal phase of the oestrous cycle (4 to 12 days post-oestrus) and at implantation (15 days post-oestrus) while mRNA and protein expression significantly increased during the luteolytic phase (day 15 post-oestrus in cycle). In pregnant ewes, inhibition of progesterone production by trilostane during the day 5 to 16 period prevented the rise in progesterone concentrations and led to a significant increase of FOXL2 expression in caruncles compared with the control group (1.4-fold, p < 0.05). Ovariectomized ewes or cows that were supplemented with exogenous progesterone for 12 days or 6 days, respectively, had lower endometrial FOXL2 expression compared with control ovariectomized females (sheep, mRNA, 1.8-fold; protein, 2.4-fold; cattle; mRNA, 2.2-fold; p < 0.05). Exogenous oestradiol treatments for 12 days in sheep or 2 days in cattle did not affect FOXL2 endometrial expression compared with control ovariectomized females, except at the protein level in both endometrial areas in the sheep. Moreover, treating bovine endometrial explants with exogenous progesterone for 48h reduced FOXL2 expression. Using in vitro assays with COS7 cells we also demonstrated that progesterone regulates the FOXL2 promoter activity through the progesterone receptor. Collectively, our findings imply that endometrial FOXL2 is, as a direct target of progesterone, involved in early pregnancy and implantation.
Assuntos
Endométrio/metabolismo , Ciclo Estral/fisiologia , Proteína Forkhead Box L2/biossíntese , Regulação da Expressão Gênica/fisiologia , Progesterona/metabolismo , Animais , Células COS , Bovinos , Chlorocebus aethiops , Feminino , Gravidez/metabolismo , OvinosRESUMO
Circadian dysfunction perturbs the female reproductive cycle. In particular, mice lacking the clock gene Bmal1 show severe infertility, implying that BMAL1 plays roles in ovulation and luteinization. Here, we examined temporal changes in clock gene expression in the ovary and oviduct before and during gonadotropin-induced follicular growth, ovulation, and luteinization in sexually immature mice. While the oviduct did not show a drastic change in clock gene expression, Bmal1 expression in the ovary was higher than that in control mice during the period from 4 to 16 hr after human chorionic gonadotropin (hCG) administration. Bmal1 expression reached a maximum at 16 hr after hCG administration, when follicle luteinization occurred. In an interesting manner, administration of hCG to ex vivo-cultured oviduct triggered a shorter circadian period and inevitably resulted in phase advance. Together, our present data suggest that LH surge induces continuous expression of BMAL1 in the mouse ovary and modulates circadian phase in the mouse oviduct.
RESUMO
We have recently shown that the conditioned media from bovine oviductal epithelial cell culture suppress sperm phagocytosis by neutrophils, suggesting that the oviduct around oestrus supplies the anti-inflammatory microenvironment. To investigate the immune response of neutrophils toward the sperm at ovulation in the buffalo oviduct, we examined (a) a detailed distribution of neutrophils in the oviduct in buffaloes, (b) the effect of ovulatory follicular fluid (FF) and oviductal fluid (OF) on sperm phagocytosis by neutrophils, and (c) the interaction of the ovulatory FF with OF on sperm phagocytosis by neutrophils in vitro. Buffalo oviducts were collected from healthy reproductive tracts at a local slaughterhouse. A detailed observation by histological examination and transmission electron microscopy revealed that neutrophils exist in the oviduct epithelium and lumen throughout the oestrous cycle in buffaloes. The number of neutrophils at the oestrus stage was higher in ampulla compared with those in isthmus, whereas they remained relatively constant at the dioestrus stage. Two hours of preincubation of neutrophils with FF enhanced sperm phagocytosis through the formation of neutrophil extracellular traps (NETs) together with H2 O2 production, whereas OF around oestrus (eOF) suppressed sperm phagocytosis, NETs formation, and H2 O2 production and relieved the above FF-induced inflammatory response. Our findings show that neutrophils exist in the healthy cyclic oviduct across bovine species, and the OF supplies a strong anti-inflammatory environment that could minimize the inflammatory effect of the FF that flows into the oviduct lumen after ovulation and supports the occurrence of fertilization.
Assuntos
Búfalos/imunologia , Estro/fisiologia , Tubas Uterinas/metabolismo , Líquido Folicular/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Espermatozoides/imunologia , Matadouros , Animais , Bovinos , Células Epiteliais/imunologia , Armadilhas Extracelulares/imunologia , Tubas Uterinas/citologia , Feminino , Fertilização/imunologia , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Inflamação/imunologia , Masculino , Ovulação/imunologiaRESUMO
Decreased fertility associated with maternal ageing is a well-known critical problem, and progesterone (P4) concentration decreases during the menopause transition in women. The corpus luteum (CL) secretes P4, thereby supporting the implantation and maintenance of pregnancy. It is proposed that a bovine model is suitable for studying age-associated decline of fertility in women because the physiology of cows is similar to that of women and cows have a greater longevity compared with other animal models. Thus, we investigated the age-dependent qualitative changes and inflammatory responses in the bovine CL. In vivo experiment: Cows were divided into three groups, namely, young (mean age: 34.8 months), middle (80.1 months) and aged (188.9 months). Blood samples were collected on days 7 and 12 during the estrous cycle. In vitro experiments: Cows were divided into young (mean age: 27.6 months) and aged (183.1 months). The CL tissues of these groups were collected from a local slaughterhouse and used for tissue culture experiments. An in vivo experiment, plasma P4 concentration in aged cows was significantly lower than that in young cows, whereas no difference was found regarding the area of CL. An in vitro examination in the bovine CL tissues showed that the luteal P4 concentration, P4 secretion, and mRNA expression of StAR and 3ß-HSD were lower in aged cows compared with young cows, especially in the early luteal phase. However, no differences were detected in the mRNA expression of inflammation- and senescence-related factors and inflammatory responses to lipopolysaccharides between the CL tissues from young and aged cows, indicating that an age-dependent increase in inflammation is not involved in the luteal function. P4 production and secretion from the bovine CL diminish in old cows, especially during the early luteal phase, suggesting that senescence may affect the luteal function in cows.
Assuntos
Envelhecimento/fisiologia , Corpo Lúteo/fisiologia , Progesterona/sangue , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Bovinos , Corpo Lúteo/química , Corpo Lúteo/metabolismo , Feminino , Fertilidade/fisiologia , Inflamação/fisiopatologia , Inflamação/veterinária , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Técnicas de Cultura de Tecidos/veterináriaRESUMO
Recent studies suggest that Day-7 bovine embryo starts to communicate with the uterine epithelium through interferon-tau (IFNT) signaling. However, immune modulatory role of IFNT in the uterus just after the embryo moves from the oviduct is unclear. We aimed to examine the hypothesis that Day-7 bovine embryo secretes IFNT in the uterus, which induces anti-inflammatory response in immune cells. The uterine flush (UF) with multiple embryos was collected from Day-7 donor pregnant cows and peripheral blood mononuclear cells (PBMCs) were then cultured in UF. Transcripts detected in PBMCs revealed that UF from pregnant cows down-regulated pro-inflammatory cytokines (TNFA, IL1B) and up-regulated anti-inflammatory cytokine (IL10) expression, with activation of interferon-stimulated genes (ISGs; ISG15, OAS1) as compared with UF from non-pregnant cows. An addition of specific anti-IFNT antibody to the UF inhibited the effect on PBMCs, indicating that IFNT is a major factor for such immune modulation. The observation that conditioned media from bovine uterine epithelial cells both stimulated with IFNT in vitro and supplemented with fresh IFNT induced similar PBMCs gene expression, confirming that IFNT directly acts on this immune crosstalk. This study shows that IFNT secreted from Day-7 embryo in vivo generates anti-inflammatory response in immune cells, which may provide immunological tolerance to accept the embryo.
Assuntos
Líquidos Corporais/imunologia , Meios de Cultivo Condicionados/farmacologia , Tolerância Imunológica , Interferon Tipo I/imunologia , Leucócitos Mononucleares/imunologia , Proteínas da Gravidez/imunologia , Útero/imunologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Líquidos Corporais/química , Líquidos Corporais/efeitos dos fármacos , Bovinos , Meios de Cultivo Condicionados/química , Citocinas/genética , Citocinas/imunologia , Embrião de Mamíferos , Epitélio/imunologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Interferon Tipo I/genética , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Leucócitos Mononucleares/citologia , Troca Materno-Fetal/imunologia , Gravidez , Proteínas da Gravidez/genética , Cultura Primária de Células , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Útero/metabolismoRESUMO
In the cow, cryopreserved semen is inseminated into the uterus, and most of sperm are removed by backflow and phagocytes. Nevertheless, the mechanism responsible for sperm phagocytosis is unclear. Here, we used cultured bovine uterine epithelial cells (BUECs) to investigate the uterine response to sperm and the mechanism that activates polymorphonuclear neutrophils (PMNs). BUEC monolayers were co-cultured with different numbers of washed sperm obtained from cryopreserved semen (104 , 105 , and 106 sperm/ml) for 3 hr. Sperm dose-dependently up-regulated IL8 (Interleukin 8). Sperm at 106 /ml increased mRNA expression of TNFA (Tumor necrosis factor alpha), IL1B (Interleukin 1B), NFKB2 (Nuclear factor kappa B2), and C3 (Complement factor 3), as well as PGES (Prostaglandin E synthase) expression and PGE2 release. Live sperm, but not dead sperm, attached to BUECs, and dead sperm did not induce an acute inflammatory response. Time-dependent effects were evaluated by co-culture of 106 /ml washed sperm with BUECs for 0, 1, 3, and 6 hr. The number of detached sperm increased gradually toward 6 hr. Maximum mRNA expression of IL8, TNFA, IL1B, and NFKB2 was induced at 3 hr, while C3 continued to increase toward 6 hr. Sperm did not stimulate mRNA expression of anti-inflammatory cytokines TGFB1 (Transforming growth factor beta 1) or IL10 (Interleukin 10). Medium conditioned by sperm co-incubated with BUECs stimulated PMNs phagocytosis of sperm in vitro. Fresh media supplemented with low levels of IL1B, TNFA, and PGE2 up-regulated sperm phagocytosis by PMNs as well. In conclusion, our findings strongly suggest that the active sperm attach to BUECs and trigger uterine local innate immunity with induction of a pro-inflammatory response that enhances sperm phagocytosis by PMNs.
Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Espermatozoides/metabolismo , Animais , Bovinos , Técnicas de Cocultura , Dinoprostona/metabolismo , Endométrio/citologia , Células Epiteliais/citologia , Feminino , Técnicas In Vitro , Interleucina-8/metabolismo , Masculino , NF-kappa B/metabolismo , Espermatozoides/citologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
SummaryNutrition influences the microenvironment in the proximity of oocyte and affects early embryonic development. Elevated blood urea nitrogen, even in healthy dairy cows, is associated with reduced fertility and there is high correlation between blood urea levels and follicular fluid urea levels. Using a docking calculation (in silico), urea showed a favorable binding activity towards the ZP-N domain of ZP3, that of ZP2, and towards the predicted full-length sperm receptor ZP3. Supplementation of oocyte maturation medium with nutrition-related levels of urea (20 or 40 mg/dl as seen in healthy dairy cows fed on low or high dietary protein, respectively) dose-dependently increased: (i) the proportion of oocytes that remained uncleaved; and (ii) oocyte degeneration; and reduced cleavage, blastocyst and hatching rates. High levels of urea induced shrinkage in oocytes, visualised using scanning electron microscopy. Urea downregulated NANOG while dose-dependently upregulating OCT4, DNMT1, and BCL2 expression. Urea at 20 mg/dl induced BAX expression. Using mathematical modelling, the rate of oocyte degeneration was sensitive to urea levels; while cleavage, blastocyst and hatching rates exhibited negative sensitivity. The present data imply a novel role for urea in reducing oocyte competence and changing gene expression in the resultant embryos.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/fisiologia , Ureia/farmacologia , Animais , Blastocisto/citologia , Blastocisto/fisiologia , Bovinos , Meios de Cultura/química , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Feminino , Fertilização in vitro/veterinária , Marcadores Genéticos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Oócitos/efeitos dos fármacos , Domínios Proteicos , Ureia/química , Ureia/metabolismo , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismoRESUMO
The relationship between vaginal discharge characteristics and metabolic status has been studied in postpartum dairy cows. Vaginal discharges at 2-6 weeks postpartum were scored weekly on a 1 (clear) to 5 (purulent material with stench) scale using the Metricheck device and classified into three groups as follows: Endometritis group (n = 19), greater than or equal to score 4 until 3 weeks postpartum; Delayed involution group (n = 9), score 2 or 3 after having score 1; Healthy group (n = 23), cows except those belonging to the Delayed involution and Endometritis groups. The uterus and cervix were assessed using ultrasonography. Blood samples were collected twice weekly from 1 to 6 weeks postpartum from all cows and were additionally obtained for 13,14-dihydro-15-keto-prostaglandin F2α (PGFM) measurements from multiparous cows. Cows with delayed involution had delayed onset of luteal activity (p < 0.05) and higher serum urea nitrogen (BUN) concentrations (p < 0.01) than healthy animals. Cows with endometritis had more peripartum diseases (p < 0.05), lower milk yield (p < 0.05), longer cervix diameter (p < 0.05), and lower serum albumin (p < 0.01), total cholesterol (p < 0.01), and magnesium (p < 0.01) concentrations, and higher aspartate aminotransferase levels (p < 0.05) than healthy cows. Plasma PGFM concentrations tended to be higher in the Delayed involution group (p = 0.083) and lower in the Endometritis group (p = 0.085) than in the Healthy group. In summary, delayed involution was shown to be associated with higher BUN concentration, and endometritis may have been caused by peripartum diseases and hepatic dysfunction.
Assuntos
Doenças dos Bovinos/diagnóstico , Dinoprosta/análogos & derivados , Endometrite/veterinária , Período Pós-Parto/sangue , Descarga Vaginal/veterinária , Animais , Bovinos , Doenças dos Bovinos/sangue , Colo do Útero/fisiologia , Indústria de Laticínios/instrumentação , Dinoprosta/sangue , Endometrite/diagnóstico , FemininoRESUMO
Recent observations suggest that the bovine uterus starts to react to the early embryo immediately after its arrival from the oviduct. The present study aimed to investigate the effect of the early developing embryo on the immune-related gene profile in bovine uterine epithelial cells (BUECs) in vitro, and to further examine the impact of conditioned media (CM), either from embryo-BUEC co-culture or embryo culture alone, on gene expression in peripheral blood mononuclear cells (PBMCs). First, BUECs were co-cultured with morulae (n = 10) for D5-D9 (D0 = IVF), and gene expression in BUECs was analyzed. Subsequently, PBMCs were cultured in CM from embryo-BUEC co-culture or D5-D9 embryo culture, and gene expression was evaluated. In BUECs, the embryo induced interferon (IFN)-stimulated genes (ISGs: ISG15, OAS1, and MX2), a key factor for IFN-signaling (STAT1), and type-1 IFN receptors (IFNAR1 and IFNAR2), with suppression of NFkB2, NFkBIA and pro-inflammatory cytokines (TNFA and IL1B). The embryo also stimulated PTGES and PGE2 secretion in BUECs. In PBMCs, both CM from embryo-BUEC co-culture and embryo culture alone induced ISGs, STAT1 and TGFB1, while suppressing TNFA and IL17. Similarly, interferon tau (IFNT) at 100 pg/ml suppressed NFkB2, TNFA and IL1B in BUECs, and also stimulated TGFB1 and suppressed TNFA in PBMCs. Our findings suggest that the bovine embryo, in the first four days in the uterus (D5-D9), starts to induce an anti-inflammatory response in epithelial cells and in immune cells. IFNT is likely to act as one of the intermediators for induction of the anti-inflammatory response in the bovine uterus.
Assuntos
Desenvolvimento Embrionário/fisiologia , Células Epiteliais/metabolismo , Interferon Tipo I/metabolismo , Proteínas da Gravidez/metabolismo , Útero/metabolismo , Animais , Bovinos , Técnicas de Cocultura , Técnicas de Cultura Embrionária , Células Epiteliais/citologia , Feminino , Útero/citologiaRESUMO
In dairy cows, inflammatory diseases caused by infection with pathogenic bacteria post calving affect ovarian functions. This study examined the relationship between single-nucleotide polymorphisms (SNPs) of Toll-like receptor 4 (TLR4), reproductive performances [the number of artificial insemination (AI) application and days open], and immune cell functions (apoptosis and migration). Two hundred Holstein cows from the Obihiro University farm were included. The SNPs of TLR4 were genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP) method. Polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) were isolated from whole blood. The number of AI application in the animals with T/C genotype in the TLR4 exon3 was lower than that in animals with C/C genotype (1.6 ± 0.2 and 2.2 ± 0.2, respectively). Among the animals with TLR4 exon3 polymorphisms, the days open was shorter for the T/C cows than that for C/C cows (100.7 ± 6.9 days and 136.6 ± 9.0 days, respectively). The SNPs in the TLR4 intron did not affect the number of AI and days open. The apoptosis percentage of PMNs treated with lipopolysaccharide (LPS; 0.001 and 1 µg/ml) tended to be lower in the T/C genotype compared to that in the C/C genotype. The transmigration rates of PMNs, and IL-1ß production in PBMCs were tended to be higher for the animals with the T/C genotype compared to those for animals with the C/C genotype. Taken together, these results suggest that TLR4 polymorphisms offer a meaningful tool to judge the reproductive potential and immune activity in individual cows.
Assuntos
Apoptose/imunologia , Movimento Celular/imunologia , Imunidade Inata/imunologia , Polimorfismo de Nucleotídeo Único/genética , Reprodução/genética , Receptor 4 Toll-Like/genética , Animais , Apoptose/genética , Bovinos , Feminino , Genótipo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de RestriçãoRESUMO
This study aimed to investigate the possible effects of the vasoactive peptide angiotensin II (ANG II), secreted by bovine oviduct epithelial cells, on the in vitro phagocytic activity of polymorphonuclear leukocytes, specifically neutrophils, towards sperm. The measured concentrations of ANG II in oviduct flushes and conditioned medium from primary bovine oviduct epithelial culture ranged from 10(-10) to 10(-11) M. In our experiments, neutrophils were incubated for 2 hr with ANG II (0, 10(-11) , 10(-10) , 10(-9) , and 10(-8) M). Phagocytosis and superoxide production were then assessed by co-incubation of these neutrophils with sperm pretreated to induce capacitation, revealing a dose-dependent increase in both metrics by ANG II. This stimulatory effect of ANG II was eliminated by losartan, an angiotensin receptor type 1 (AGTR1) antagonist. ANG II also suppressed neutrophil transcription of angiotensin converting enzyme-1 (ACE) and AGTR1, but not AGTR2, suggesting the involvement of the AGTR1 receptor-mediated pathway in the response to sperm. Scanning electron microscopy further revealed that incubation of neutrophils with ANG II stimulated the formation of DNA-based extracellular traps for sperm entanglement. The addition of prostaglandin E2 at concentrations found in the oviduct suppressed the ANG II-stimulated phagocytic activity of neutrophils towards sperm. Thus the physiological levels of ANG II stimulate neutrophil phagocytosis of sperm in vitro, and suggest that an angiotensin/prostaglandin E2 system may fine-tune the local immune response that fosters sperm survival in the bovine oviduct. Mol. Reprod. Dev. 83: 630-639, 2016. © 2016 Wiley Periodicals, Inc.