Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 704: 149636, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38402724

RESUMO

Osteoclasts are hematopoietic cells attached to the bones containing type I collagen-deposited hydroxyapatite during bone resorption. Two major elements determine the stiffness of bones: regular calcified bone (bone that is resorbable by osteoclasts) and un-calcified osteoid bone (bone that is un-resorbable by osteoclasts). The osteolytic cytokine RANKL promotes osteoclast differentiation; however, the roles of the physical interactions of osteoclasts with calcified and un-calcified bone at the sealing zones and the subsequent cellular signaling remain unclear. In this study, we investigated podosomes, actin-rich adhesion structures (actin-ring) in the sealing zone that participates in sensing hard stiffness with collagen in the physical environment during osteoclast differentiation. RANKL-induced osteoclast differentiation induction was promoted when Raw264.7 cells were cultured on collagen-coated plastic dishes but not on non-coated plastic dishes, which was associated with the increased expression of podosome-related genes and Src. In contrast, when cells were cultured on collagen gel, expression of podosome-related genes and Src were not upregulated. The induction of podosome-related genes and Src requires hard stiffness with RGD-containing substratum and integrin-mediated F-actin polymerization. These results indicate that osteoclasts sense both the RGD sequence and stiffness of calcified collagen through their podosome components regulating osteoclast differentiation via the c-Src pathway.


Assuntos
Reabsorção Óssea , Podossomos , Humanos , Osteoclastos/metabolismo , Podossomos/metabolismo , Actinas/metabolismo , Diferenciação Celular/fisiologia , Reabsorção Óssea/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Colágeno/metabolismo , Oligopeptídeos/metabolismo
2.
Glycobiology ; 33(8): 615-625, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924076

RESUMO

Hyaluronan (HA) is a central component of the extracellular matrix (ECM) in the brain and plays a pivotal role in neural development and plasticity. Brain HA exists in 2 distinct forms of the ECM: the diffuse ECM, which is soluble in saline and detergents, and the condensed ECM, which forms aggregates, such as perineuronal nets (PNNs). Although the physiological functions of HA significantly differ depending on its size, size differences in HA have not yet been examined in the 2 ECM types, which is partly because of the lack of methods to rapidly and accurately measure the molecular weight (MW) of HA. In this study, we established a simple method to simultaneously assess the MW of HA in multiple crude biological samples. HA was purified through single-step precipitation from tissue extracts using biotinylated HA-binding protein and streptavidin-coupled magnetic beads, followed by separation on gel electrophoresis. By applying this method to HA in the mouse brain, we revealed that the condensed ECM contained higher MW HA than the diffuse ECM. Higher MW HA and lower MW HA exhibited different spatial distributions: the former was confined to PNNs, whereas the latter was widely present throughout the brain. Furthermore, the limited degradation of HA showed that only higher MW HA was required to form an insoluble HA-aggrecan complex. The present study demonstrated that the MW of HA in the brain strongly correlates with the localization and solubility of the ECM it forms.


Assuntos
Ácido Hialurônico , Neurônios , Animais , Camundongos , Ácido Hialurônico/metabolismo , Solubilidade , Neurônios/metabolismo , Matriz Extracelular/metabolismo , Encéfalo/metabolismo
3.
Biochem Biophys Res Commun ; 612: 50-56, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35504089

RESUMO

Chondroitin sulfate (CS) and heparan sulfate (HS) are sulfated glycosaminoglycan (GAG) chains that consist of repeating disaccharide units composed of hexosamine and hexuronic acid. GAG chains exhibit diverse bioactivities in a structure-specific manner. Marine invertebrates are a rich source of highly sulfated and rare structures of GAG chains. Here, we isolated GAGs from the green-lipped mussel Perna canaliculus, an aquaculture species that is produced on a large scale. We separated GAGs based on the degree of negative charges and analyzed their disaccharide compositions. CS and HS both exhibited characteristic compositions of differently sulfated disaccharides. CS chains showed a higher degree of sulfation than HS chains and contained a high percentage of the E unit disaccharide GlcA-GalNAc(4,6-O-disulfate). Furthermore, CS chains rich in the E unit stimulated the neurite outgrowth of primary cultured neurons. The present results indicate the potential of P. canaliculus GAGs as biomaterials to study the structure-function relationships of GAGs.


Assuntos
Glicosaminoglicanos , Perna (Organismo) , Animais , Sulfatos de Condroitina/química , Dissacarídeos/química , Glicosaminoglicanos/química , Heparitina Sulfato , Sulfatos
4.
Mol Reprod Dev ; 84(7): 585-595, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28418219

RESUMO

A 250-kDa protein was isolated from fluid in the middle spermatic duct (MSD) of the blue crab (Portunus pelagicus). N-terminal and partial amino acid sequences revealed that this MSD-specific protein is highly similar to the plasma-enriched protein Alpha-2 macroglobulin (α2M). The P. pelagicus ortholog (Ppα2M) is a large glycoprotein possessing mannose and N-acetylglucosamine residues. Ppa2m mRNA was detected in the spermatic duct, androgenic gland, and hematopoietic tissue, whereas the protein was primarily observed in the apical cytoplasm of MSD epithelium and in the matrix of the acrosome of MSD sperm; distally within spermatic duct, Ppα2M was lost from the sperm membrane but remained in the sperm acrosome. These results suggest that Ppα2M is expressed and glycosylated in the epithelium of spermatic ducts, secreted into MSD fluid, taken up by sperm in the MSD, and removed from the surface of sperm during its transit towards the female spermatheca. Given that Ppα2M also exhibits protease inhibitor activity, we hypothesize that acrosome localized Ppα2M may suppress premature acrosome reaction during post-testicular sperm maturation in this crab.


Assuntos
Estruturas Animais/metabolismo , Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Genitália Masculina/metabolismo , Espermatozoides/metabolismo , alfa-Macroglobulinas/metabolismo , Animais , Feminino , Masculino
5.
Biochim Biophys Acta Gen Subj ; 1861(10): 2420-2434, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28625420

RESUMO

BACKGROUND: The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW: Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS: The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE: Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Química Encefálica , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/reabilitação , Sulfatos de Condroitina/química , Matriz Extracelular/química , Humanos , Ácido Hialurônico/química , Rede Nervosa/fisiologia , Rede Nervosa/fisiopatologia , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Sinapses/fisiologia
6.
Neural Plast ; 2016: 1305801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057358

RESUMO

Perineuronal nets (PNNs) are lattice-like extracellular matrix structures composed of chondroitin sulfate proteoglycans (CSPGs). The appearance of PNNs parallels the decline of neural plasticity, and disruption of PNNs reactivates neural plasticity in the adult brain. We previously reported that sulfation patterns of chondroitin sulfate (CS) chains on CSPGs influenced the formation of PNNs and neural plasticity. However, the mechanism of PNN formation regulated by CS sulfation remains unknown. Here we found that overexpression of chondroitin 6-sulfotransferase-1 (C6ST-1), which catalyzes 6-sulfation of CS chains, selectively decreased aggrecan, a major CSPG in PNNs, in the aged brain without affecting other PNN components. Both diffuse and PNN-associated aggrecans were reduced by overexpression of C6ST-1. C6ST-1 increased 6-sulfation in both the repeating disaccharide region and linkage region of CS chains. Overexpression of 6-sulfation primarily impaired accumulation of aggrecan in PNNs, whereas condensation of other PNN components was not affected. Finally, we found that increased 6-sulfation accelerated proteolysis of aggrecan by a disintegrin and metalloproteinase domain with thrombospondin motif (ADAMTS) protease. Taken together, our results indicate that sulfation patterns of CS chains on aggrecan influenced the stability of the CSPG, thereby regulating formation of PNNs and neural plasticity.


Assuntos
Agrecanas/metabolismo , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Sulfotransferases/metabolismo , Proteínas ADAMTS/metabolismo , Animais , Sulfatos de Condroitina/metabolismo , Camundongos , Neurônios/metabolismo , Carboidrato Sulfotransferases
7.
Glycobiology ; 25(10): 1112-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163659

RESUMO

Polysialic acid (polySia) is a linear polymer of sialic acid that modifies neural cell adhesion molecule (NCAM) in the vertebrate brain. PolySia is a large and exclusive molecule that functions as a negative regulator of cell-cell interactions. Recently, we demonstrated that polySia can specifically bind fibroblast growth factor 2 (FGF2) and BDNF; however, the protective effects of polySia on the proteolytic cleavage of these proteins remain unknown, although heparin/heparan sulfate has been shown to impair the cleavage of FGF2 by trypsin. Here, we analyzed the protective effects of polySia on the proteolytic cleavage of FGF2 and proBDNF/BDNF. We found that polySia protected intact FGF2 from tryptic activity via the specific binding of extended polySia chains on NCAM to FGF2. Oligo/polySia also functioned to impair the processing of proBDNF by plasmin via binding of oligo/polySia chains on NCAM. In addition, the polySia structure synthesized by mutated polysialyltransferase, ST8SIA2/STX(SNP7), which was previously identified from a schizophrenia patient, was impaired for these functions compared with polySia produced by normal ST8SIA2. Taken together, these data suggest that the protective effects of polySia toward FGF2 and proBDNF may be involved in the regulation of the concentrations of these neurologically active molecules.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Fator 2 de Crescimento de Fibroblastos/química , Precursores de Proteínas/química , Ácidos Siálicos/química , Fibrinolisina/química , Humanos , Cinética , Ligação Proteica , Proteólise , Tripsina/química
8.
J Neurosci Res ; 93(9): 1462-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25981177

RESUMO

Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). Neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) is one of the major protein components of neuronal DRM. To determine the cellular function of NAP-22, interacting proteins were screened with an immunoprecipitation assay, and calcineurin (CaN) was detected. Further studies with NAP-22 prepared from DRM and CaN expressed in bacteria showed the binding of these proteins and a dose-dependent inhibitory effect of the NAP-22 fraction on the phosphatase activity of CaN. On the other hand, NAP-22 expressed in bacteria showed low binding to CaN and a weak inhibitory effect on phosphatase activity. To solve this discrepancy, identification of a nonprotein component that modulates CaN activity in the DRM-derived NAP-22 fraction was attempted. After lyophilization, a lipid fraction was extracted with chloroform/methanol. The lipid fraction showed an inhibitory effect on CaN without NAP-22, and further fractionation of the extract with thin-layer chromatography showed the presence of several lipid bands having an inhibitory effect on CaN. The mobility of these bands coincided with that of authentic ganglioside (GM1a, GD1a, GD1b, and GT1b), and authentic ganglioside showed an inhibitory effect on CaN. Treatment of lipid with endoglycoceramidase, which degrades ganglioside to glycochain and ceramide, caused a diminution of the inhibitory effect. These results show that DRM-derived NAP-22 binds several lipids, including ganglioside, and that ganglioside inhibits the phosphatase activity of CaN.


Assuntos
Encéfalo/citologia , Calcineurina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Gangliosídeos/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Ligação a Calmodulina/química , Células Cultivadas , Cromatografia em Camada Fina , Proteínas do Citoesqueleto/química , Detergentes/farmacologia , Gangliosídeos/química , Glicosídeo Hidrolases/farmacologia , Imunoprecipitação , Metabolismo dos Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Neurônios/ultraestrutura , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Ratos Wistar
9.
J Nutr Biochem ; 128: 109608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458474

RESUMO

Vitamin C (VitC) is maintained at high concentrations in the brain and is an essential micronutrient for brain function. VitC deficiency leads to neuropsychiatric scurvy, which is characterized by depression and cognitive impairment. However, the molecular mechanism by which mild VitC deficiency impairs brain function is currently unknown. In the present study, we conducted RNA sequencing analysis and found that a short-term VitC deficiency altered the brain transcriptome in ODS rats, which cannot synthesize VitC. Bioinformatic analysis indicated that VitC deficiency affected the expression of genes controlled by the glucocorticoid receptor in the brain. We confirmed an increased secretion of glucocorticoids from the adrenal gland during VitC deficiency. We found that non-neuronal cells, including microglia, which are resident immune cells in the brain, changed their transcriptional patterns in response to VitC deficiency. Immunohistochemical analysis revealed that the quiescent ramified microglia transform into the activated amoeboid microglia during three weeks of VitC deficiency. The morphological activation of microglia was accompanied by increased expression of proinflammatory cytokines such as interleukin-6 in the hippocampus. Furthermore, VitC deficiency decreased the number of newly born neurons in the dentate gyrus of the hippocampus, suggesting that VitC was required for adult neurogenesis that plays a crucial role in learning and memory. Our findings may provide insights into the molecular mechanisms underlying the maintenance of normal brain function by adequate levels of VitC.


Assuntos
Deficiência de Ácido Ascórbico , Encéfalo , Glucocorticoides , Microglia , Neurogênese , Transcriptoma , Animais , Microglia/metabolismo , Ratos , Encéfalo/metabolismo , Masculino , Glucocorticoides/metabolismo , Deficiência de Ácido Ascórbico/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Hipocampo/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia
10.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512724

RESUMO

Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.


Assuntos
Matriz Extracelular , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo
11.
Genes (Basel) ; 14(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36833235

RESUMO

Loss-of-function mutations in carbohydrate sulfotransferase 14 (CHST14) cause musculocontractural Ehlers-Danlos syndrome-CHST14 (mcEDS-CHST14), characterized by multiple congenital malformations and progressive connective tissue fragility-related manifestations in the cutaneous, skeletal, cardiovascular, visceral and ocular system. The replacement of dermatan sulfate chains on decorin proteoglycan with chondroitin sulfate chains is proposed to lead to the disorganization of collagen networks in the skin. However, the pathogenic mechanisms of mcEDS-CHST14 are not fully understood, partly due to the lack of in vitro models of this disease. In the present study, we established in vitro models of fibroblast-mediated collagen network formation that recapacitate mcEDS-CHST14 pathology. Electron microscopy analysis of mcEDS-CHST14-mimicking collagen gels revealed an impaired fibrillar organization that resulted in weaker mechanical strength of the gels. The addition of decorin isolated from patients with mcEDS-CHST14 and Chst14-/- mice disturbed the assembly of collagen fibrils in vitro compared to control decorin. Our study may provide useful in vitro models of mcEDS-CHST14 to elucidate the pathomechanism of this disease.


Assuntos
Síndrome de Ehlers-Danlos , Sulfotransferases , Animais , Camundongos , Decorina , Sulfotransferases/genética , Síndrome de Ehlers-Danlos/genética , Matriz Extracelular/patologia , Colágeno
12.
Carbohydr Polym ; 313: 120847, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182947

RESUMO

The structural and functional relationships of glycosaminoglycans (GAGs) derived from marine organisms have been investigated, suggesting that marine invertebrates, particularly Bivalvia, are abundant sources of highly sulfated or branched GAGs. In this study, we identified a novel fucosylated heparan sulfate (Fuc-HS) from the midgut gland of the Japanese scallop, Patinopecten yessoensis. Scallop HS showed resistance to GAG-degrading enzymes, including chondroitinases and heparinases, and susceptibility to heparinases increased when scallop HS was treated with mild acid hydrolysis, which removes the fucosyl group. Moreover, 1H NMR detected significant signals near 1.2-1.3 ppm corresponding to the H-6 methyl proton of fucose residues and small H-3 (3.59 ppm) or H-2 (3.39 ppm) signals of glucuronate (GlcA) were detected, suggesting that the fucose moiety is attached to the C-3 position of GlcA in scallop HS. GC-MS detected peaks corresponding to 1, 3, 5-tri-O-acetyl-2, 4-di-O-methyl-L-fucitol and 1, 4, 5-tri-O-acetyl-2, 3-di-O-methyl-L-fucitol, suggesting that the fucose moiety is 3-O- or 4-O-sulfated. Furthermore, scallop HS showed anti-coagulant and neurite outgrowth-promoting (NOP) activities. These results suggest that the midgut gland of scallops is a valuable source of Fuc-HS with biological activities.


Assuntos
Sulfatos de Condroitina , Pectinidae , Animais , Sulfatos de Condroitina/química , Fucose/química , Glicosaminoglicanos/química , Heparitina Sulfato , Ácido Glucurônico , Glucuronatos
13.
Glycobiology ; 21(12): 1596-605, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21725074

RESUMO

Naturally occurring polysialic acid (polySia) structures have a large diversity, primarily arising from the diversity in the sialic acid components as well as in the intersialyl linkages. In 2004, we demonstrated the presence of a new type of polySia, 8-O-sulfated N-acetylneuraminic acid (Neu5Ac) capped α2,9-linked polyNeu5Ac, on the O-glycans of a major 40-80 kDa sialoglycoprotein, flagellasialin, in sea urchin sperm. In this study, we demonstrated that another type of polySia, the α2,8-linked polyNeu5Ac, exclusively occurs on O-glycans of a 190 kDa glycoprotein (190 kDa-gp), whereas the α2,9-linked polyNeu5Ac is exclusively present on flagellasialin. The 190 kDa-gp is localized in both flagellum and head of sperm. We also demonstrated that polysialogangliosides containing the α2,8-linked polyNeu5Ac are present in sperm head. Thus, this study shows two novel features of the occurrence of polySia in nature, the co-localization of polySia with different intersialyl linkages, the α2,8- and α2,9-linkages, in a single cell and the occurrence of α2,8-linked polyNeu5Ac in glycolipids. Anti-α2,8-linked polyNeu5Ac antibody had no effect on fertilization, which contrasted with the previous results that anti-α2,9-linked polyNeu5Ac antibody inhibited sperm motility and fertilization. Based on these properties, distinct functions of α2,8- and α2,9-polySia structures are implicated in fertilization.


Assuntos
Biopolímeros/química , Glicolipídeos/química , Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Ouriços-do-Mar/citologia , Espermatozoides/química , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/imunologia , Anticorpos/farmacologia , Biopolímeros/imunologia , Fertilização/efeitos dos fármacos , Imunofluorescência , Glicolipídeos/imunologia , Glicoproteínas/imunologia , Masculino , Ácido N-Acetilneuramínico/imunologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/imunologia
14.
Biochim Biophys Acta Gen Subj ; 1865(2): 129804, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253804

RESUMO

BACKGROUND: Perineuronal nets (PNNs) are insoluble aggregates of extracellular matrix molecules in the brain that consist of hyaluronan (HA) and chondroitin sulfate proteoglycans (CSPGs). PNNs promote the acquisition and storage of memories by stabilizing the formation of synapses in the adult brain. Although the deterioration of PNNs has been suggested to contribute to the age-dependent decline in brain function, the molecular mechanisms underlying age-related changes in PNNs remain unclear. METHODS: The amount and solubility of PNN components were investigated by sequential extraction followed by a disaccharide analysis and immunoblotting. We examined the interaction between HA and aggrecan, a major HA-binding CSPG, by combining mass spectrometry and pull-down assays. RESULTS: The solubility and amount of HA increased in the brain with age. Among several CSPGs, the solubility of aggrecan was selectively elevated during aging. In contrast to alternations in biochemical properties, the expression of PNN components at the transcript level was not markedly changed by aging. The increased solubility of aggrecan was not due to the loss of HA-binding properties. Our results indicated that the degradation of high-molecular-mass HA induced the release of the HA-aggrecan complex from PNNs in the aged brain. CONCLUSION: The present study revealed a novel mechanism underlying the age-related deterioration of PNNs in the brain.


Assuntos
Agrecanas/metabolismo , Envelhecimento , Encéfalo/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Ácido Hialurônico/metabolismo , Animais , Encéfalo/citologia , Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neurônios/citologia , Neurônios/metabolismo
15.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850861

RESUMO

Musculocontractural Ehlers-Danlos syndrome (mcEDS) is caused by generalized depletion of dermatan sulfate (DS) due to biallelic pathogenic variants in CHST14 encoding dermatan 4-O-sulfotransferase 1 (D4ST1) (mcEDS-CHST14). Here, we generated mouse models for mcEDS-CHST14 carrying homozygous mutations (1 bp deletion or 6 bp insertion/10 bp deletion) in Chst14 through CRISPR/Cas9 genome engineering to overcome perinatal lethality in conventional Chst14-deleted knockout mice. DS depletion was detected in the skeletal muscle of these genome-edited mutant mice, consistent with loss of D4ST1 activity. The mutant mice showed common pathophysiological features, regardless of the variant, including growth impairment and skin fragility. Notably, we identified myopathy-related phenotypes. Muscle histopathology showed variation in fiber size and spread of the muscle interstitium. Decorin localized diffusely in the spread endomysium and perimysium of skeletal muscle, unlike in wild-type mice. The mutant mice showed lower grip strength and decreased exercise capacity compared to wild type, and morphometric evaluation demonstrated thoracic kyphosis in mutant mice. The established CRISPR/Cas9-engineered Chst14 mutant mice could be a useful model to further our understanding of mcEDS pathophysiology and aid in the development of novel treatment strategies.


Assuntos
Síndrome de Ehlers-Danlos , Animais , Sistemas CRISPR-Cas/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Feminino , Genômica , Camundongos , Camundongos Knockout , Gravidez , Sulfotransferases/genética , Sulfotransferases/metabolismo
16.
Biomolecules ; 10(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143303

RESUMO

The chondroitin sulfate (CS)-rich dense extracellular matrix surrounding neuron cell bodies and proximal dendrites in a mesh-like structure is called a perineuronal net (PNN). CS chains in PNNs control neuronal plasticity by binding to PNN effectors, semaphorin-3A (Sema3A) and orthodenticle homeobox 2. Sema3A recognizes CS-containing type-E disaccharide units (sulfated at O-4 and O-6 of N-acetylgalactosamine). Type-E disaccharide units are synthesized by N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). In this study, we demonstrated that Sema3A accumulates in the PNNs surrounding parvalbumin cells, even in mice deficient in GalNAc4S-6ST. In addition, there were no differences in the number and structure of PNNs visualized by Cat316 antibody and Wisteria floribunda lectin, which recognize CS chains, between wild type and GalNAc4S-6ST knockout mice. Therefore, we re-examined the Sema3A binding motif found in CS chains using chemically synthesized CS tetrasaccharides. As a result, we found that non-sulfated GalNAc residues at the non-reducing termini of CS chains are required for the binding of Sema3A.


Assuntos
Glicoproteínas de Membrana/genética , Neurônios/metabolismo , Fatores de Transcrição Otx/genética , Semaforina-3A/genética , Sulfotransferases/genética , Animais , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/metabolismo , Dendritos/genética , Dendritos/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Ligação Proteica/genética
17.
Biochim Biophys Acta Gen Subj ; 1864(10): 129679, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623025

RESUMO

BACKGROUND: Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is involved in many cellular functions. In the adult brain, HA forms macromolecular aggregates around synapses and plays important roles in neural plasticity. In contrast to the well-characterized function of HA in the adult brain, its roles in the developing brain remain largely unknown. METHODS: Biochemical and histochemical analyses were performed to analyze the amount, solubility, and localization of HA in the developing mouse brain. By combining in utero labeling, cell isolation, and in vitro cultures, we examined the expression of hyaluronan synthase (HAS) and morphological maturation of cortical neurons. RESULTS: The amount of HA increased during perinatal development and decreased in the adult. HA existed as a soluble form in the early stages; however, its solubility markedly decreased during postnatal development. HA localized in cell-sparse regions in the embryonic stages, but was broadly distributed during the postnatal development of the cerebral cortex. Developing cortical neurons expressed both Has2 and Has3, but not Has1, suggesting the autonomous production of HA by neurons themselves. HA formed a pericellular matrix around the cell bodies and neurites of developing cortical neurons, and the inhibition of HA synthesis reduced neurite outgrowth. CONCLUSION: The formation of the pericellular HA matrix is essential for the proper morphological maturation of developing neurons. GENERAL SIGNIFICANCE: This study provides new insights into the roles of hyaluronan in the brain.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Matriz Extracelular/metabolismo , Ácido Hialurônico/metabolismo , Neurônios/citologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos ICR , Neurogênese , Neurônios/metabolismo
18.
Psychopharmacology (Berl) ; 201(2): 229-35, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18777019

RESUMO

INTRODUCTION: Recently, second-generation antipsychotics (SGAs) have been widely used in the treatment of mood disorders. However, the mechanisms of the antidepressant effect of SGAs remain unclear. We proposed that Golf protein, a stimulant alpha-subunit of G protein coupled with the dopamine D1 receptor, might a play the key role in the antidepressive effect of antidepressants. To clarify the relationship between Golf protein and the antidepressive effects of antipsychotics, we examined the effects of chronic treatment with several antipsychotics on the level of Golf protein in the rat striatum. MATERIALS AND METHODS: Male Wistar rats were treated with one of several antipsychotics for 2 weeks: olanzapine (2, 5, or 10 mg/kg), sulpiride (5, 10, or 50 mg/kg), amisulpride (3, 10, or 20 mg/kg), risperidone (0.2 or 2 mg/kg), haloperidol (0.3 or 3 mg/kg), or clozapine (2 or 10 mg/kg). RESULTS AND DISCUSSION: Olanzapine (5 mg/kg), sulpiride (5, or 10 mg/kg), and amisulpride (10 mg/kg) treatments significantly increased the level of Golf protein, but there was no increase with administration of higher doses of these three antipsychotics. Risperidone, haloperidol, and clozapine treatment did not change the level of Golf protein at any dose. In this study, all antipsychotics that have antidepressive effects increased Golf protein. This suggests that an increase in Golf may play an important role in the antidepressive effect of antipsychotics. CONCLUSION: We postulate that the increase in Golf protein levels result in an increase the proportion of D1 receptors in the high-affinity state and that augmentation of the dopaminergic system exerts the antidepressant effect.


Assuntos
Antipsicóticos/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Transtorno Depressivo/tratamento farmacológico , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Amissulprida , Animais , Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Western Blotting , Clozapina/administração & dosagem , Corpo Estriado/química , Transtorno Depressivo/metabolismo , Relação Dose-Resposta a Droga , Subunidades alfa de Proteínas de Ligação ao GTP/química , Haloperidol/administração & dosagem , Injeções Intraperitoneais , Masculino , Olanzapina , Ratos , Ratos Wistar , Risperidona/administração & dosagem , Sulpirida/análogos & derivados , Sulpirida/farmacologia , Sulpirida/uso terapêutico , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29456495

RESUMO

Aggrecan, a chondroitin sulfate (CS) proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs). Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells) late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity. Wisteria floribunda agglutinin (WFA), an N-acetylgalactosamine-specific plant lectin, binds to the CS chains of aggrecan and has been widely used to visualize PNNs. Although PNNs show substantial molecular heterogeneity, the importance of this heterogeneity in neural plasticity remains unknown. Here, in addition to WFA lectin, we used the two monoclonal antibodies Cat315 and Cat316, both of which recognize the glycan structures of aggrecan, to investigate the molecular heterogeneity of PNNs. WFA detected the highest number of PNNs in all cortical layers, whereas Cat315 and Cat316 labeled only a subset of PNNs. WFA+, Cat315+, and Cat316+ PNNs showed different laminar distributions in the adult visual cortex. WFA, Cat315 and Cat316 detected distinct, but partially overlapping, populations of PNNs. Based on the reactivities of these probes, we categorized PNNs into four groups. We found that two subpopulation of PNNs, one with higher and one with lower WFA-staining are differentially labeled by Cat316 and Cat315, respectively. CS chains recognized by Cat316 were diminished in mice deficient in an enzyme involved in the initiation of CS-biosynthesis. Furthermore, WFA+ and Cat316+ aggrecan were spatially segregated and formed microdomains in a single PNN. Otx2 co-localized with Cat316+ but not with WFA+ aggrecan in PNNs. Our results suggest that the heterogeneity of PNNs around PV cells may affect the functional maturation of these cells.

20.
J Biochem ; 164(2): 113-125, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490044

RESUMO

Casein (CN) is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic CN and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of CN was investigated. Confocal microscopy using component-specific antibodies showed that αs1-CN antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular CN signals were more remarkable than those of the other antigens, ß-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein (EEA1) and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4°C. Liquid chromatography coupled with mass spectroscopy analysis of the protein fraction in the basal-side medium identified the αs1-CB fragment including the N-terminal region and the αs2-CN fragment containing the central part of polypeptide at 100-1,000 fmol per well levels. Moreover, ß-CN C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that CNs are partially degraded by cellular proteases and/or peptidases and immunologically active CN fragments are transported to basal side of the cell monolayers.


Assuntos
Caseínas/análise , Caseínas/metabolismo , Leite/química , Animais , Transporte Biológico , Células CACO-2 , Bovinos , Células Cultivadas , Cromatografia Líquida , Humanos , Espectrometria de Massas , Microscopia Confocal , Leite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA