Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Genes Cells ; 28(9): 653-662, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264202

RESUMO

Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Apoptose , Quelantes de Ferro/farmacologia , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477917

RESUMO

Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.


Assuntos
Metilação de DNA/genética , DNA/química , Epigênese Genética/genética , Termodinâmica , Ilhas de CpG/genética , Citosina/química , DNA/genética , DNA/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico
3.
Artigo em Inglês | MEDLINE | ID: mdl-32081425

RESUMO

Telomeric G-quadruplex topology has the ability to regulate telomerase activity, which counteracts the shortening of telomere with successive cell divisions, thereby causing genomic longevity. However, the detailed mechanism of G-quadruplexes topologies formed by telomeric sequences requires further investigation. In this study, we quantitatively investigated the effect of cosolutes, particularly the varying number of hydroxyl groups, on the structural transition between hybrid type and parallel G-quadruplexes formed by telomeric DNA sequences. Cosolutes with one or no hydroxyl groups in the vicinal position more efficiently induced the transition to parallel G-quadruplex from hybrid G-quadruplex than those with more hydroxyl groups. We also examined the effect of cosolute structures on the hydration of G-quadruplex formation; the results indicated that cosolutes with fewer hydroxyl groups lead to the release of greater amount of water during G-quadruplex formation. Molecular dynamics results showed that the parallel G-quadruplex was more dehydrated than the hybrid type G-quadruplex. Generally, a dehydrated structure is favored under crowding condition. Thus, depending on the surrounding cosolutes, the G-quadruplex topology can be controlled by the G-quadruplex hydration state.

4.
J Am Chem Soc ; 139(23): 7768-7779, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28523907

RESUMO

To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.


Assuntos
DNA/química , Quadruplex G , RNA/química , Ribose/química , Ressonância Magnética Nuclear Biomolecular
5.
Anal Chem ; 89(13): 6948-6953, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28557436

RESUMO

A sensitive telomerase assay based on asymmetric-polymerase chain reaction (A-PCR) on magnetic beads and subsequent application of cycling probe technology, STAMC, which is insusceptible to DNase and PCR inhibitors, was for the first time applied to clinical specimens in addition to a conventional telomeric repetitive amplification protocol (TRAP). The electrophoresis results showed that an increase in scraped cervical cancer cells not only reduced TRAP products but also increased smaller products, suggesting the unreliability of TRAP for clinical samples. To achieve the required sensitivity of STAMC for clinical application, the sequence and concentration conditions were explored for the forward and reverse primers for A-PCR, which resulted in a detection limit of only two HeLa cells with 1 µM TS primer (5'-AATCCGTCGAGCAGAGTT-3') and 0.04 µM ACX primer (5'-GCGCGGCTTACCCTTACCCTTACCCTAACC-3'). Under the same primer conditions, the fluorescence signal of STAMC increased as scraped cervical cancer cells increased despite showing a negligible intensity for benign tumors. Furthermore, STAMC showed no signal for a cervical cancer patient treated with irradiation therapy. These results indicate that STAMC is useful for not only cervical cancer screening but also investigating the effect of cancer treatments such as radiation therapy and drug administration.


Assuntos
Ensaios Enzimáticos/métodos , Telomerase/análise , Neoplasias do Colo do Útero/diagnóstico , DNA/química , Feminino , Células HeLa , Humanos , Limite de Detecção , Fenômenos Magnéticos , Reação em Cadeia da Polimerase/métodos
6.
Molecules ; 22(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144399

RESUMO

The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca2+, and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.


Assuntos
DNA/química , Quadruplex G , Nanofios/química , Peptídeo Hidrolases/química , Tamanho da Partícula , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Propriedades de Superfície
7.
Sci Technol Adv Mater ; 17(1): 753-759, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933115

RESUMO

We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, these osmolytes generally destabilize the duplex; however, it was observed that osmolytes having the trimethylamine group stabilized the duplex at the lower concentrations because of a direct binding to a groove of the duplex. These results are useful not only to predict DNA structures and their thermodynamics under physiological environments in living cells, but also design of polymers and materials to regulate structure and stability of DNA sequences.

8.
Chembiochem ; 16(12): 1803-10, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26149371

RESUMO

The RNA cleavage activity of the hammerhead ribozyme has been compared in various mixed aqueous solutions containing cosolvents. Kinetic analysis revealed that the tested cosolvents enhanced the ribozyme activity, particularly at low MgCl2 concentrations. These enhancements, in some cases of more than tenfold, resulted from a reduction in the Mg(2+) concentration required for substrate cleavage. An inverse correlation was found between the MgCl2 concentration essential for efficient catalysis and the dielectric constant values. In contrast, FRET measurements showed no substantial influence of cosolvents on the Mg(2+) -induced structural transitions. The results suggest that the solution environment has various effects on the Mg(2+) interactions involved in the catalysis and global folding of the ribozyme.


Assuntos
Cloreto de Magnésio/farmacologia , RNA Catalítico/metabolismo , Solventes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Íons , Cloreto de Magnésio/química , Modelos Moleculares , Dobramento de Proteína/efeitos dos fármacos , Solventes/química
9.
J Biol Inorg Chem ; 20(6): 1049-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220274

RESUMO

Cellular ribozymes exhibit catalytic activity in media containing large numbers of anionic compounds and macromolecules. In this study, the RNA cleavage activity of the hammerhead ribozyme induced by Mg(2+) was investigated using the solutions containing background nucleic acids, small phosphate and carboxylic acid compounds, and neutral polymers. Analysis of the substrate cleavage kinetics showed that the anionic compounds do not affect the ribozyme activity in Mg(2+)-saturated solutions and there is almost no effect of the anion-Mg(2+) complexes formed. On the other hand, the rate of substrate cleavage in Mg(2+)-unsaturated solutions was reduced under conditions of a high background of anionic compounds found in cells. The extent of the reduction was more with a greater net negative charge, caused by decreased amounts of Mg(2+) that could be used for the ribozyme reaction. It was remarkable that background DNA and RNA molecules having phosphodiester bonds reduced the cleavage rate as much as adenosine monophosphates having a charge of -2 when the effects of the same amount of phosphate groups were compared. Greater reductions in rates than those expected from the molecular charge were also observed in the background of fatty acids that form micelles. An addition of poly(ethylene glycol) to the solutions partially restored the ribozyme activity, suggesting a possible role of macromolecular crowding in counteracting the inhibitory effects of background anions on the ribozyme reaction. The results have biological and practical implications with respect to the effects of molecular environment on the efficiency of ion binding to RNA.


Assuntos
Ânions/química , RNA Catalítico/antagonistas & inibidores , Nucleotídeos de Adenina/química , Aminoácidos/química , Sequência de Bases , Dextranos/química , Ácidos Graxos/química , Glucose-6-Fosfato/química , Cinética , Magnésio/química , Polietilenoglicóis/química , Clivagem do RNA , RNA Catalítico/química
10.
Sensors (Basel) ; 15(4): 9388-403, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25905703

RESUMO

G-quadruplex-based drug delivery carriers (GDDCs) were designed to capture and release a telomerase inhibitor in response to a target mRNA. Hybridization between a loop on the GDDC structure and the mRNA should cause the G-quadruplex structure of the GDDC to unfold and release the bound inhibitor, anionic copper(II) phthalocyanine (CuAPC). As a proof of concept, GDDCs were designed with a 10-30-mer loop, which can hybridize with a target sequence in epidermal growth factor receptor (EGFR) mRNA. Structural analysis using circular dichroism (CD) spectroscopy showed that the GDDCs form a (3 + 1) type G-quadruplex structure in 100 mM KCl and 10 mM MgCl2 in the absence of the target RNA. Visible absorbance titration experiments showed that the GDDCs bind to CuAPC with Ka values of 1.5 × 10(5) to 5.9 × 105 M(-1) (Kd values of 6.7 to 1.7 µM) at 25 °C, depending on the loop length. Fluorescence titration further showed that the G-quadruplex structure unfolds upon binding to the target RNA with Ka values above 1.0 × 10(8) M(-1) (Kd values below 0.01 µM) at 25 °C. These results suggest the carrier can sense and bind to the target RNA, which should result in release of the bound drug. Finally, visible absorbance titration experiments demonstrated that the GDDC release CuAPC in response to the target RNA.


Assuntos
Quadruplex G , RNA Mensageiro/metabolismo , Dicroísmo Circular , Receptores ErbB/metabolismo , Indóis/metabolismo , Isoindóis , Telomerase/metabolismo
11.
Small ; 10(2): 330-6, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23913787

RESUMO

Upconversion nanoparticles (UCNPs) have been proposed as a promising new class of biological luminescent labels because of their weak auto-fluorescence background, strong penetration ability under near-infrared (NIR) radiation, resistance to photobleaching, and low toxicity. Although UCNPs hold great promise in nanotechnology and nanomedicine, their applications in ECL fields still remain unexplored. Herein, a label-free, ultra-sensitive and selective electrochemiluminescence (ECL) assay is developed for detection of cyclin A2 by using highly efficient ECL graphene-upconversion hybrid. Being an important member of the cyclin family, cyclin A2 is involved in the initiation of DNA replication, transcription and cell cycle reg-ulation through the association of cyclin-dependent kinases (CDK). Cyclin A2 is a prognostic indicator in early-stage cancers and a target for treatment of different types of cancers. However, the expression level of cyclin A2 is quite low, direct detection of cyclin A2 in crude cancer cell extracts is challenging and important for both clinical diagnosis of cancer in the early stage and the treatment. By chemically grafting cyclin A2 detection specific probe, a PEGlyted hexapeptide, to graphene-upconversion hybrid, the constructed ECL biosensor displays a superior performance for cyclin A2 , which can not only detect cyclin A2 directly in cancer cell extracts, but also discriminate between normal cells and cancer cells. More importantly, the ECL biosensor has different responses between clinical used anticancer drug-treated and non-treated cancer cells, which demonstrates that the sensor can be potentially used for drug screening, and for evaluation of therapeutic treatments in early-stage cancers.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Nanopartículas , Neoplasias/diagnóstico , Óxidos/química , Ciclina A2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Diagnóstico Precoce , Humanos , Luminescência , Neoplasias/enzimologia , Neoplasias/metabolismo , Prognóstico , Sensibilidade e Especificidade
12.
Org Biomol Chem ; 12(6): 936-41, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24362853

RESUMO

A simple and sensitive method for measuring telomeric tandem repeat DNA and telomerase activity based on fluorescence resonance energy transfer (FRET) with a FAM-modified 12-mer ODN probe as a donor (fluorophore) and ethidium bromide (EB) as an acceptor (quencher) is proposed. When telomeric DNA and the FAM-modified probe form a duplex, EB intercalates between base-pairs, resulting in fluorescence quenching of FAM through FRET from FAM to EB. This method can be used to estimate the amount of telomeric DNAs in a sample solution as the molar concentration of the telomeric DNA unit [5'-(TTA GGG TTA GGG)-3']. A linear fluorescence quenching ratio was obtained in 5-1000 pM of telomeric DNA units by adjusting the amount of FAM-modified probe. A PCR-free telomerase activity assay using this FRET-based method could be applied to ≥400 HeLa cells per µL. This assay represents a novel technique for initial screenings of cancer diagnosis and is a facile method for quantifying telomeric DNA or other tandem repeat sequences.


Assuntos
DNA/análise , Transferência Ressonante de Energia de Fluorescência , Técnicas de Amplificação de Ácido Nucleico , Telomerase/metabolismo , Telômero/química , Sequência de Bases , DNA/metabolismo , Células HeLa , Humanos , Telômero/metabolismo
13.
Methods ; 64(1): 19-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23562626

RESUMO

The telomere G-quadruplex-binding and telomerase-inhibiting capacity of two cationic (TMPyP4 and PIPER) and two anionic (phthalocyanine and Hemin) G-quadruplex-ligands were examined under conditions of molecular crowding (MC). Osmotic experiments showed that binding of the anionic ligands, which bind to G-quadruplex DNA via π-π stacking interactions, caused some water molecules to be released from the G-quadruplex/ligand complex; in contrast, a substantial number of water molecules were taken up upon electrostatic binding of the cationic ligands to G-quadruplex DNA. These behaviors of water molecules maintained or reduced the binding affinity of the anionic and the cationic ligands, respectively, under MC conditions. Consequently, the anionic ligands (phthalocyanine and Hemin) robustly inhibited telomerase activity even with MC; in contrast, the inhibition of telomerase caused by cationic TMPyP4 was drastically reduced by MC. These results allow us to conclude that the binding of G-quadruplex-ligands to G-quadruplex via non-electrostatic interactions is preferable for telomerase inhibition under physiological conditions.


Assuntos
Quadruplex G , Telomerase/química , Telômero/química , Ligantes , Modelos Moleculares , Eletricidade Estática , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Água/química
14.
Biochemistry ; 52(33): 5620-8, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23909872

RESUMO

Thioflavin T (ThT), a typical probe for protein fibrils, also binds human telomeric G-quadruplexes with a fluorescent light-up signal change and high specificity against DNA duplexes. Cell penetration and low cytotoxicity of fibril probes having been widely established, modifying ThT and other fibril probes is an attractive means of generating new G-quadruplex ligands. Thus, elucidating the binding mechanism is important for the design of new drugs and fluorescent probes based on ThT. Here, we investigated the binding mechanism of ThT with several variants of the human telomeric sequence in the presence of monovalent cations. Fluorescence titrations and electrospray ionization mass spectrometry (ESI-MS) analyses demonstrated that each G-quadruplex unit cooperatively binds to several ThT molecules. ThT brightly fluoresces when a single ligand is bound to the G-quadruplex and is quenched as ligand binding stoichiometry increases. Both the light-up signal and the dissociation constants are exquisitely sensitive to the base sequence and to the G-quadruplex structure. These results are crucial for the sensible design and interpretation of G-quadruplex detection assays using fluorescent ligands in general and ThT in particular.


Assuntos
Corantes Fluorescentes/química , Quadruplex G , Telômero/genética , Tiazóis/química , Algoritmos , Benzotiazóis , Sítios de Ligação , Dicroísmo Circular , DNA/química , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Tiazóis/metabolismo
15.
Top Curr Chem ; 330: 87-110, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22752579

RESUMO

Intracellular space is highly crowded with soluble and insoluble biomolecules that range from large polymers, such as proteins and nucleic acids, to small molecules, including metabolites and metal ions. It is therefore of interest to understand the effects of molecular crowding on the structure, stability, and function of biomolecules. Moreover, molecular crowding is observed not only intracellularly but also in the extracellular matrix and under the conditions used in in vitro biotechnological and nanotechnological processes. However, most biochemical studies of biomolecules are performed under dilute conditions. Recent studies have demonstrated critical effects of molecular crowding on nucleic acids. In the present study we discuss how molecular crowding affects the properties of G-quadruplexes as well as other non-canonical nucleic acid structures.


Assuntos
Quadruplex G , Ácidos Nucleicos/química , Água/química , Animais , Humanos , Termodinâmica
16.
Molecules ; 18(10): 11751-67, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24071983

RESUMO

An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.


Assuntos
Telomerase/química , Sequência de Bases , Biocatálise , Extratos Celulares/química , Ensaios Enzimáticos , Reações Falso-Negativas , Quadruplex G , Células HeLa , Humanos , Hidrólise , Indóis/química , Isoindóis , Limite de Detecção , Fenômenos Magnéticos , Reação em Cadeia da Polimerase , Sondas RNA/química , Sondas RNA/genética , Telomerase/metabolismo , Telômero/metabolismo
17.
BioTech (Basel) ; 12(2)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092470

RESUMO

The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.

18.
Chem Commun (Camb) ; 59(33): 4891-4894, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37039515

RESUMO

Structural selectivity of G-quadruplex ligands is essential for cellular applications since there is an excess of nucleic acids forming duplex structures compared to G-quadruplex structures in living cells. In this study, we developed new structure-selective G-quadruplex ligands utilizing a simple and fast screening system. The affinity, selectivity, enzymatic inhibitory activity and cytotoxicity of the structure-selective G-quadruplex ligands were demonstrated along with a structural selectivity-cytotoxicity relationship of G-quadruplex ligands.


Assuntos
Quadruplex G , Ácidos Nucleicos , DNA/química , Ligantes
19.
Cell Death Dis ; 14(11): 766, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001089

RESUMO

Tumor suppressor p53 plays a central role in response to DNA damage. DNA-damaging agents modulate nuclear actin dynamics, influencing cell behaviors; however, whether p53 affects the formation of nuclear actin filaments remains unclear. In this study, we found that p53 depletion promoted the formation of nuclear actin filaments in response to DNA-damaging agents, such as doxorubicin (DOXO) and etoposide (VP16). Even though the genetic probes used for the detection of nuclear actin filaments exerted a promotive effect on actin polymerization, the detected formation of nuclear actin filaments was highly dependent on both p53 depletion and DNA damage. Whilst active p53 is known to promote caspase-1 expression, the overexpression of caspase-1 reduced DNA damage-induced formation of nuclear actin filaments in p53-depleted cells. In contrast, co-treatment with DOXO and the pan-caspase inhibitor Q-VD-OPh or the caspase-1 inhibitor Z-YVAD-FMK induced the formation of nuclear actin filament formation even in cells bearing wild-type p53. These results suggest that the p53-caspase-1 axis suppresses DNA damage-induced formation of nuclear actin filaments. In addition, we found that the expression of nLifeact-GFP, the filamentous-actin-binding peptide Lifeact fused with the nuclear localization signal (NLS) and GFP, modulated the structure of nuclear actin filaments to be phalloidin-stainable in p53-depleted cells treated with the DNA-damaging agent, altering the chromatin structure and reducing the transcriptional activity. The level of phosphorylated H2AX (γH2AX), a marker of DNA damage, in these cells also reduced upon nLifeact-GFP expression, whilst details of the functional relationship between the formation of nLifeact-GFP-decorated nuclear actin filaments and DNA repair remained to be elucidated. Considering that the loss of p53 is associated with cancer progression, the results of this study raise a possibility that the artificial reinforcement of nuclear actin filaments by nLifeact-GFP may enhance the cytotoxic effect of DNA-damaging agents in aggressive cancer cells through a reduction in gene transcription.


Assuntos
Actinas , Proteína Supressora de Tumor p53 , Actinas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Citoesqueleto de Actina/metabolismo , Dano ao DNA , Caspases/metabolismo , DNA/metabolismo
20.
Biophys J ; 102(12): 2808-17, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22735531

RESUMO

The thermal stability of nucleic acid structures is perturbed under the conditions that mimic the intracellular environment, typically rich in inert components and under osmotic stress. We now describe the thermodynamic stability of DNA oligonucleotide structures in the presence of high background concentrations of neutral cosolutes. Small cosolutes destabilize the basepair structures, and the DNA structures consisting of the same nearest-neighbor composition show similar thermodynamic parameters in the presence of various types of cosolutes. The osmotic stress experiments reveal that water binding to flexible loops, unstable mismatches, and an abasic site upon DNA folding are almost negligible, whereas the binding to stable mismatch pairs is significant. The studies using the basepair-mimic nucleosides and the peptide nucleic acid suggest that the sugar-phosphate backbone and the integrity of the basepair conformation make important contributions to the binding of water molecules to the DNA bases and helical grooves. The study of the DNA hydration provides the basis for understanding and predicting nucleic acid structures in nonaqueous solvent systems.


Assuntos
DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Água/metabolismo , Pareamento Incorreto de Bases , Sequência de Bases , DNA/genética , Sequências Repetidas Invertidas , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Pressão Osmótica , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA