Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurochem ; 153(1): 80-102, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31886885

RESUMO

Glutamate dehydrogenase (GDH) is essential for the brain function and highly regulated, according to its role in metabolism of the major excitatory neurotransmitter glutamate. Here we show a diurnal pattern of the GDH acetylation in rat brain, associated with specific regulation of GDH function. Mornings the acetylation levels of K84 (near the ADP site), K187 (near the active site), and K503 (GTP-binding) are highly correlated. Evenings the acetylation levels of K187 and K503 decrease, and the correlations disappear. These daily variations in the acetylation adjust the GDH responses to the enzyme regulators. The adjustment is changed when the acetylation of K187 and K503 shows no diurnal variations, as in the rats after a high dose of thiamine. The regulation of GDH function by acetylation is confirmed in a model system, where incubation of the rat brain GDH with acetyl-CoA changes the enzyme responses to GTP and ADP, decreasing the activity at subsaturating concentrations of substrates. Thus, the GDH acetylation may support cerebral homeostasis, stabilizing the enzyme function during diurnal oscillations of the brain metabolome. Daytime and thiamine interact upon the (de)acetylation of GDH in vitro. Evenings the acetylation of GDH from control animals increases both IC50GTP and EC50ADP . Mornings the acetylation of GDH from thiamine-treated animals increases the enzyme IC50GTP . Molecular mechanisms of the GDH regulation by acetylation of specific residues are proposed. For the first time, diurnal and thiamine-dependent changes in the allosteric regulation of the brain GDH due to the enzyme acetylation are shown.


Assuntos
Encéfalo/enzimologia , Ritmo Circadiano/fisiologia , Glutamato Desidrogenase/fisiologia , Tiamina/farmacologia , Acetilcoenzima A/farmacologia , Acetilação , Regulação Alostérica/efeitos dos fármacos , Animais , Córtex Cerebral/enzimologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/química , Masculino , Mitocôndrias/enzimologia , NAD/farmacologia , Ratos , Ratos Wistar
2.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
3.
Anal Biochem ; 552: 100-109, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326069

RESUMO

Glutamate is a key metabolite and major excitatory neurotransmitter, degraded through transformation to 2-oxoglutarate which is further catabolized by 2-oxoglutarate dehydrogenase complex (OGDHC). Both the glutamate excitotoxicity and impaired OGDHC activity are hallmarks of neurodegeneration. This work quantifies a relationship between the brain OGDHC activity and glutamate levels, assessing its diagnostic value to characterize (patho)physiology. A moderate to strong positive correlation of the two parameters determined under varied physiological settings (brain regions, seasons, gender, pregnancy, rat line), is revealed. Mitochondrial impairment (OGDHC inhibition or acute hypobaric hypoxia) decreases the interdependence, even when the parameter means do not change significantly. Compared to the cortex, the cerebellum exhibits a lower inter-individual glutamate variation and a weaker glutamate-OGDHC interdependence. Specific metabolism of the brain regions is also characterized by a positive correlation between glutamate and γ-aminobutyric acid (GABA) concentrations in the cortex but not in the cerebellum. In contrast, a strong positive correlation between glutamate and glutamine is present in both the cortex and cerebellum. The differences in metabolic correlations are in line with transcriptomics data which suggest that glutamate distribution between competitive pathways contributes to the brain-region-specific features of the interdependences of glutamate and OGDHC or GABA.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Animais , Encéfalo/enzimologia , Feminino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345566

RESUMO

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , Progéria , Humanos , Progéria/genética , Progéria/patologia , Senilidade Prematura/genética , Envelhecimento , Fenótipo , Transtornos do Crescimento/complicações
5.
Ageing Res Rev ; 95: 102213, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38309591

RESUMO

Pharmacological interventions are emerging as potential avenues of alleviating age-related disease. However, the knowledge of ongoing clinical trials as they relate to aging and pharmacological interventions is dispersed across a variety of mediums. In this review we summarize 136 age-related clinical trials that have been completed or are ongoing. Furthermore, we establish a database that describe the trials (AgingDB, www.agingdb.com) keeping track of the previous and ongoing clinical trials, alongside their outcomes. The aim of this review and database is to give people the ability to easily query for their trial of interest and stay up to date on the latest results. In sum, herein we give an overview of the current pharmacological strategies that have been applied to target human aging.


Assuntos
Envelhecimento , Humanos , Estudos Longitudinais
6.
Redox Biol ; 62: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933393

RESUMO

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Assuntos
Ácido Glutâmico , Complexo Cetoglutarato Desidrogenase , Ratos , Animais , Ácido Glutâmico/metabolismo , Estudos Retrospectivos , Citoplasma/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia , Óxido Nítrico/metabolismo
7.
Cell Death Dis ; 13(11): 999, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435816

RESUMO

Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.


Assuntos
Inteligência Artificial , Sarcoma , Humanos , Centríolos/genética , Carcinogênese/metabolismo , Sarcoma/metabolismo , Reparo do DNA/genética
8.
Nat Aging ; 2(8): 742-755, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-37118134

RESUMO

Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is challenging due to the lack of exclusive or universal markers. Using neural networks, we predict senescence from the nuclear morphology of human fibroblasts with up to 95% accuracy, and investigate murine astrocytes, murine neurons, and fibroblasts with premature aging in culture. After generalizing our approach, the predictor recognizes higher rates of senescence in p21-positive and ethynyl-2'-deoxyuridine (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age in H&E-stained murine liver tissue and human dermal biopsies. Evaluating medical records reveals that higher rates of senescent cells correspond to decreased rates of malignant neoplasms and increased rates of osteoporosis, osteoarthritis, hypertension and cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep learning predictor of senescence that is applicable across tissues and species and is associated with health outcomes in humans.


Assuntos
Senilidade Prematura , Aprendizado Profundo , Humanos , Camundongos , Animais , Senescência Celular/fisiologia , Envelhecimento , Biomarcadores
9.
Ageing Res Rev ; 62: 101094, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512174

RESUMO

Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest developments in cutting edge technologies applied across the field of ageing research. We cover emerging model organisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a glimpse of what will be pushing the field onwards and upwards.


Assuntos
Envelhecimento , Humanos
10.
Aging (Albany NY) ; 12(24): 24484-24503, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33378272

RESUMO

Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA.


Assuntos
Envelhecimento , Inteligência Artificial , Pesquisa Biomédica , Longevidade , Senescência Celular , Congressos como Assunto , Descoberta de Drogas , Humanos , Estilo de Vida , Preparações Farmacêuticas
11.
Aging (Albany NY) ; 10(11): 3079-3088, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425188

RESUMO

Multiple interventions in the aging process have been discovered to extend the healthspan of model organisms. Both industry and academia are therefore exploring possible transformative molecules that target aging and age-associated diseases. In this overview, we summarize the presented talks and discussion points of the 5th Annual Aging and Drug Discovery Forum 2018 in Basel, Switzerland. Here academia and industry came together, to discuss the latest progress and issues in aging research. The meeting covered talks about the mechanistic cause of aging, how longevity signatures may be highly conserved, emerging biomarkers of aging, possible interventions in the aging process and the use of artificial intelligence for aging research and drug discovery. Importantly, a consensus is emerging both in industry and academia, that molecules able to intervene in the aging process may contain the potential to transform both societies and healthcare.

12.
Front Neurosci ; 11: 651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249928

RESUMO

The healthy human body contains small amounts of metabolic formaldehyde (FA) that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA), a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH) content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2) thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5), ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.

13.
Rejuvenation Res ; 17(2): 116-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23902273

RESUMO

Age-related metastatic mineralization of soft tissues has been considered a passive and spontaneous process. Recent data have demonstrated that calcium salt deposition in soft tissues could be a highly regulated process. Although calcification occurs in any tissue type, vascular calcification has been of particular interest due to association with atherosclerosis, chronic kidney disease (CKD), and osteoporosis. Different mechanisms underlying calcium apatite accumulation are explored with these age-related disorders. In the case of atherosclerotic plaques, oxy-lipids trigger release of the pro-inflammatory cytokines and inflammation that activate calcification processes in aorta intimae. In CKD patients, renal failure alters the balance between calcium and phosphate levels usually regulated by fibroblast growth factor-23 (FGF23), Klotho, and vitamin D, and vascular smooth muscle cells (VSMCs) begin to explore an osteoblastosteoblast-like phenotype. Calcification could affect extracellular matrix along with VSMCs. Collagen is a major component of extracellular matrix and its modifications accumulate with age. The formation of cross-links between collagen fibers is regulated by the action of lysine hydroxylases and lysyl oxidase and could occur spontaneously. Oxidation-induced advanced glycation end products (AGEs) are a major type of spontaneous cross-links that accelerate with age and may result in tissue stiffness, problems with recycling, and potential accumulation of calcium apatite. Applying strategies for clearing the AGEs proposed by de Grey may be more difficult in the highly mineralized extracellular matrix. We performed bioinformatic analysis of the molecular pathways underlying calcification in atherosclerotic and CKD patients, signaling pathways of collagen cross-links formation, and bone mineralization, and we propose new potential targets and review drugs for calcification treatment.


Assuntos
Envelhecimento/patologia , Calcinose/patologia , Tecido Conjuntivo/patologia , Minerais/metabolismo , Animais , Calcinose/genética , Fator de Crescimento de Fibroblastos 23 , Predisposição Genética para Doença , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA