Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38531464

RESUMO

Research conducted using murine preclinical models of osteoarthritis (OA) over the last three decades has brought forth many exciting developments showcasing mechanisms and pathways that drive disease pathogenesis. These models have identified therapeutic targets that can be modulated via innovative biologicals and pharmaceuticals. However, many of these approaches have failed to translate to humans and reach the clinic. This commentary aims to highlight some of the key hurdles in the translation of novel findings using preclinical OA models with a focus on sex-related differences and variations in chondrosenescence in these animal models. Notably, besides chondrosenescence, other signaling mechanisms have been shown to be affected by sexual dimorphism (i.e. TGFß signaling, EGFR/integrin α1ß1 and Trpv4). Preclinical models of OA mainly utilize male mice due to their capacity to manifest fast progressing OA structural phenotype compared to female mice. This experimental trend has overlooked and ignored the sex-related effects of numerous mechanisms affecting joint structure, that influence OA structural progression. Future work should focus on analyzing both sexes and understanding sex-related differences, which will enable us to gain a better understanding of the progression of OA based on sex-related mechanistic discrepancies, and potentially improve translatability.

2.
Croat Med J ; 65(3): 268-287, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868973

RESUMO

This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.


Assuntos
Cartilagem Articular , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Medicina Regenerativa/tendências , Medicina Regenerativa/métodos , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Traumatismos do Joelho/terapia , Traumatismos do Joelho/cirurgia , Terapia Genética/tendências , Terapia Genética/métodos , Regeneração
3.
Am J Physiol Cell Physiol ; 325(1): C257-C271, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306390

RESUMO

Osteoarthritis (OA) is a currently incurable, chronic, progressive, and debilitating musculoskeletal (MSK) condition. One of its hallmark symptoms is chronic nociceptive and neuropathic pain, which significantly reduces the quality of life of patients with OA. Although research into the pathomechanisms of OA pain is ongoing and several pain pathways are well understood, the true source of OA pain remains unclear. Ion channels and transporters are key mediators of nociceptive pain. In this narrative review article, we summarize the state-of-the-art in relation to the distribution and function of ion channels in all major synovial joint tissues in the context of pain generation. We provide an update on the ion channels likely involved in mediating peripheral and central nociceptive pathways in the nervous system in OA pain, including voltage-gated sodium and potassium channels, members of the transient receptor potential (TRP) channel family, and purinergic receptor complexes. We focus on ion channels and transporters that have the potential to be candidate drug targets for pain management in patients with OA. We propose that ion channels expressed by the cells of constituent tissues of OA-afflicted synovial joints including cartilage, bone, synovium, ligament, and muscle, should be more thoroughly investigated and targeted in the context of OA pain. Based on key findings from recent basic research articles as well as clinical trials, we propose novel directions for the development of future analgesic therapies to improve the quality of life of patients with OA.


Assuntos
Osteoartrite , Canais de Potencial de Receptor Transitório , Humanos , Qualidade de Vida , Dor/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação
4.
BMC Med ; 21(1): 14, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617553

RESUMO

BACKGROUND: Personalised medicine is a medical model that aims to provide tailor-made prevention and treatment strategies for defined groups of individuals. The concept brings new challenges to the translational step, both in clinical relevance and validity of models. We have developed a set of recommendations aimed at improving the robustness of preclinical methods in translational research for personalised medicine. METHODS: These recommendations have been developed following four main steps: (1) a scoping review of the literature with a gap analysis, (2) working sessions with a wide range of experts in the field, (3) a consensus workshop, and (4) preparation of the final set of recommendations. RESULTS: Despite the progress in developing innovative and complex preclinical model systems, to date there are fundamental deficits in translational methods that prevent the further development of personalised medicine. The literature review highlighted five main gaps, relating to the relevance of experimental models, quality assessment practices, reporting, regulation, and a gap between preclinical and clinical research. We identified five points of focus for the recommendations, based on the consensus reached during the consultation meetings: (1) clinically relevant translational research, (2) robust model development, (3) transparency and education, (4) revised regulation, and (5) interaction with clinical research and patient engagement. Here, we present a set of 15 recommendations aimed at improving the robustness of preclinical methods in translational research for personalised medicine. CONCLUSIONS: Appropriate preclinical models should be an integral contributor to interventional clinical trial success rates, and predictive translational models are a fundamental requirement to realise the dream of personalised medicine. The implementation of these guidelines is ambitious, and it is only through the active involvement of all relevant stakeholders in this field that we will be able to make an impact and effectuate a change which will facilitate improved translation of personalised medicine in the future.


Assuntos
Medicina de Precisão , Humanos
5.
Osteoarthritis Cartilage ; 31(12): 1567-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544583

RESUMO

OBJECTIVE: TissueGene-C (TG-C), a combination of human allogeneic chondrocytes and irradiated GP2-293 cells engineered to overexpress transforming growth factor-ß1 (TGF-ß1), has been developed as a novel cell-based gene therapy and a candidate for disease modifying osteoarthritis drug (DMOAD). We aim to investigate analgesic mechanism of TG-C in a pre-clinical animal model with monoiodoacetate (MIA)-induced pain. DESIGN: We used a rat MIA model of osteoarthritis (OA) pain. We examined that TG-C can regulate pain by inhibiting the upregulation of various pain mediators in both knee joint tissue and dorsal root ganglia (DRG) (n = 112) and alleviating pain behavior (n = 41) and neuronal hyperexcitability in DRG (n = 60), afferent nerve fiber (n = 24), and spinal cord (n = 35). RESULTS: TG-C significantly alleviated pain-related behavior by restoring altered dynamic weight bearing and reduced mechanical threshold of the affected hindlimb. TG-C significantly suppressed the expression of nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) in inflamed joint tissue. TG-C significantly suppressed the upregulation of tropomyosin receptor kinase A (TrkA) and nerve injury/regeneration protein (GAP43) and activation of Iba1-positive microglial cells in DRG. TG-C significantly recovered neuronal hyperexcitability by restoring RMP and firing threshold and frequency of DRG neurons, attenuating firing rates of mechanosensitive C- or Aδ-nerve fiber innervating knee joint, and lowering increased miniature and evoked excitatory postsynaptic currents (mEPSCs and eEPSCs) in the spinal cord. CONCLUSION: Our results demonstrated that TG-C exerted potent analgesic effects in a rat MIA model of OA pain by inhibiting the upregulation of pain mediators and modulating neuronal sensitization.


Assuntos
Osteoartrite , Dor , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Dor/metabolismo , Osteoartrite/terapia , Osteoartrite/tratamento farmacológico , Analgésicos/uso terapêutico , Neurônios/metabolismo , Gânglios Espinais/metabolismo , Modelos Animais de Doenças
6.
Calcif Tissue Int ; 112(2): 197-217, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633611

RESUMO

In clinical trials, biochemical markers provide useful information on the drug's mode of action, therapeutic response and side effect monitoring and can act as surrogate endpoints. In pharmacological intervention development for sarcopenia management, there is an urgent need to identify biomarkers to measure in clinical trials and that could be used in the future in clinical practice. The objective of the current consensus paper is to provide a clear list of biochemical markers of musculoskeletal health and aging that can be recommended to be measured in Phase II and Phase III clinical trials evaluating new chemical entities for sarcopenia treatment. A working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) proposed classifying biochemical markers into 2 series: biochemical markers evaluating musculoskeletal status and biochemical markers evaluating causal factors. For series 1, the group agreed on 4 biochemical markers that should be assessed in Phase II or Phase III trials (i.e., Myostatin-Follistatin, Brain Derived Neurotrophic Factor, N-terminal Type III Procollagen and Serum Creatinine to Serum Cystatin C Ratio - or the Sarcopenia Index). For series 2, the group agreed on 6 biochemical markers that should be assessed in Phase II trials (i.e., the hormones insulin-like growth factor-1 (IGF-I), dehydroepiandrosterone sulphate, and cortisol, and the inflammatory markers C-reactive protein (CRP), interleukin-6 and tumor necrosis factor-α), and 2 in Phase III trials (i.e., IGF-I and CRP). The group also proposed optional biochemical markers that may provide insights into the mode of action of pharmacological therapies. Further research and development of new methods for biochemical marker assays may lead to the evolution of these recommendations.


Assuntos
Doenças Musculoesqueléticas , Osteoartrite , Osteoporose , Sarcopenia , Humanos , Sarcopenia/tratamento farmacológico , Fator de Crescimento Insulin-Like I , Consenso , Osteoporose/tratamento farmacológico , Doenças Musculoesqueléticas/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Envelhecimento , Processos Grupais , Biomarcadores , Organização Mundial da Saúde
7.
Curr Rheumatol Rep ; 25(12): 307-326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656392

RESUMO

PURPOSE OF REVIEW: This narrative review article comprehensively explains the pathophysiology of osteoarthritis (OA) pain perception, how the gut microbiota is correlated with it, possible molecular pathways involved in probiotics-mediated OA pain reduction, limitations in the current research approaches, and future perspectives. RECENT FINDINGS: The initiation and progression of OA, including the development of chronic pain, is intricately associated with activation of the innate immune system and subsequent inflammatory responses. Trauma, lifestyle (e.g., obesity and metabolic disease), and chronic antibiotic treatment can disrupt commensal homeostasis of the human microbiome, thereby affecting intestinal integrity and promoting leakage of bacterial endotoxins and metabolites such as lipopolysaccharides (LPS) into circulation. Increased level of LPS is associated with knee osteophyte severity and joint pain. Both preclinical and clinical studies strongly suggest that probiotics may benefit patients with OA pain through positive gut microbiota modulation and attenuating low-grade inflammation via multiple pathways. Patent data also suggests increased interest in the development of new innovations that involve probiotic use for reducing OA and joint pain. Recent data suggest that probiotics are attracting more and more attention for OA pain management. The advancement of knowledge in this area may pave the way for developing different probiotic strains that can be used to support joint health, improve treatment outcomes in OA, and reduce the huge impact of the disease on healthcare systems worldwide.


Assuntos
Osteoartrite , Probióticos , Humanos , Lipopolissacarídeos , Osteoartrite/complicações , Osteoartrite/terapia , Dor , Probióticos/uso terapêutico , Artralgia
8.
Methods ; 208: 75-91, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334889

RESUMO

Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity and biocompatibility). In addition, the reported studies have confirmed that BG-reinforced constructs can improve osteogenic, angiogenic, and antibacterial activities. This review aims to provide an up-to-date report on the development of BG-containing raw biomaterials that are currently being employed for the fabrication of 3D printed scaffolds used in tissue regeneration applications with a focus on their advantages and remaining challenges.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Engenharia Tecidual , Impressão Tridimensional
9.
J Biochem Mol Toxicol ; 37(11): e23468, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491939

RESUMO

Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1ß was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.


Assuntos
Encefalopatia Hepática , Ketamina , Doenças do Sistema Nervoso , Síndromes Neurotóxicas , Camundongos , Animais , Ketamina/efeitos adversos , Amônia/toxicidade , Amônia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Encefalopatia Hepática/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Biomarcadores/metabolismo
10.
Adv Exp Med Biol ; 1409: 111-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35995905

RESUMO

This review focuses on the therapeutic features of umbilical cord blood (UCB) cells as a source for allogeneic hematopoietic stem cell transplantation (aHSCT) in adult and child populations to treat malignant and nonmalignant hematologic diseases, genetic disorders, or pathologies of the immune system, when standard treatment (e.g., chemotherapy) is not effective or clinically contraindicated. In this article, we summarize the immunological properties and the advantages and disadvantages of using UCB stem cells and discuss a variety of treatment outcomes using different sources of stem cells from different donors both in adults and pediatric population. We also highlight the critical properties (total nucleated cell dose depending on HLA compatibility) of UCB cells that reach better survival rates, reveal the advantages of double versus single cord blood unit transplantation, and present recommendations from the most recent studies. Moreover, we summarize the mechanism of action and potential benefit of mesenchymal umbilical cord cells and indicate the most common posttransplantation complications.


Assuntos
Doença Enxerto-Hospedeiro , Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Adulto , Criança , Humanos , Doenças Hematológicas/terapia , Células-Tronco Hematopoéticas , Resultado do Tratamento , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sangue Fetal
11.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047701

RESUMO

Cartilage is an avascular tissue and sensitive to mechanical trauma and/or age-related degenerative processes leading to the development of osteoarthritis (OA). Therefore, it is important to investigate the mesenchymal cell-based chondrogenic regenerating mechanisms and possible their regulation. The aim of this study was to investigate the role of intracellular calcium (iCa2+) and its regulation through voltage-operated calcium channels (VOCC) on chondrogenic differentiation of mesenchymal stem/stromal cells derived from human bone marrow (BMMSCs) and menstrual blood (MenSCs) in comparison to OA chondrocytes. The level of iCa2+ was highest in chondrocytes, whereas iCa2+ store capacity was biggest in MenSCs and they proliferated better as compared to other cells. The level of CaV1.2 channels was also highest in OA chondrocytes than in other cells. CaV1.2 antagonist nifedipine slightly suppressed iCa2+, Cav1.2 and the proliferation of all cells and affected iCa2+ stores, particularly in BMMSCs. The expression of the CaV1.2 gene during 21 days of chondrogenic differentiation was highest in MenSCs, showing the weakest chondrogenic differentiation, which was stimulated by the nifedipine. The best chondrogenic differentiation potential showed BMMSCs (SOX9 and COL2A1 expression); however, purposeful iCa2+ and VOCC regulation by blockers can stimulate a chondrogenic response at least in MenSCs.


Assuntos
Bloqueadores dos Canais de Cálcio , Condrócitos , Células-Tronco Mesenquimais , Nifedipino , Osteoartrite , Humanos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nifedipino/farmacologia , Osteoartrite/metabolismo , Canais de Cálcio Tipo L , Bloqueadores dos Canais de Cálcio/farmacologia
12.
Lab Invest ; 102(9): 989-999, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35484291

RESUMO

Wnt-1 inducible signaling pathway protein 2 (WISP-2/CCN5) is a recently identified adipokine that has been described as an important mediator of canonical Wnt activation in adipogenic precursor cells. In osteoarthritis (OA), the most common form of arthritis, chondrocytes exhibit aberrant and increased production of pro-inflammatory mediators and matrix degrading enzymes such as IL-1ß and MMP-13. Although recent evidence suggests a role for Wnt signaling in OA physiopathology, little is known about the involvement of WISP-2 in cartilage degradation. In the present study, we determined the expression of WISP-2 in healthy and OA human chondrocytes. WISP-2 expression is modulated along chondrocyte differentiation and downregulated at the onset of hypertrophy by inflammatory mediators. We also investigated the effect of WISP-2 on cartilage catabolism and performed WISP-2 loss-of-function experiments using RNA interference technology in human T/C-28a2 immortalized chondrocytes. We demonstrated that recombinant human WISP-2 protein reduced IL-1ß-mediated chondrocyte catabolism, that IL-1ß and WNT/b-catenin signaling pathways are involved in rhWISP-2 protein and IL-1ß effects in human chondrocytes, and that WISP-2 has a regulatory role in attenuating the catabolic effects of IL-1ß in chondrocytes. Gene silencing of WISP-2 increased the induction of the catabolic markers MMP-13 and ADAMTS-5 and the inflammatory mediators IL-6 and IL-8 triggered by IL-1ß in human primary OA chondrocytes in a Wnt/ß-catenin dependent manner. In conclusion, here we have shown for the first time that WISP-2 may have relevant roles in modulating the turnover of extracellular matrix in the cartilage and that its downregulation may detrimentally alter the inflammatory environment in OA cartilage. We also proved the participation of Wnt/ß-catenin signaling pathway in these processes. Thus, targeting WISP-2 might represent a potential therapeutical approach for degenerative and/or inflammatory diseases of musculoskeletal system, such as osteoarthritis.


Assuntos
Condrócitos , Osteoartrite , Proteínas de Sinalização Intercelular CCN , Cartilagem , Células Cultivadas , Humanos , Mediadores da Inflamação , Interleucina-1beta , Metaloproteinase 13 da Matriz , Proteínas Repressoras , Via de Sinalização Wnt
13.
Curr Opin Rheumatol ; 34(1): 54-60, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652292

RESUMO

PURPOSE OF REVIEW: Osteoarthritis (OA) is a painful disease for which drug development has proven difficult. One major reason for this is the heterogeneity of the disease and the current lack of operationalized means to distinguish various disease endotypes (molecular subtypes). Biomarkers measured in blood or urine, reflecting joint tissue turnover, have been developed and tested during the last decades. In this narrative review, we provide highlights on biomarkers derived from the two most studied and abundant cartilage proteins - type II collagen and aggrecan. RECENT FINDINGS: Multiple biomarkers assessing type II collagen degradation and formation, and aggrecan turnover have been developed. Several markers, such as uCTX-II, have been validated for their association with disease severity and prognosis, as well as pharmacodynamically used to describe the mode of action and efficacy of drugs in development. There is a great need for biomarkers for subdividing patients (i.e., endotyping) and recent scientific advances have not yet come closer to achieving this goal. SUMMARY: There is strong support for using biomarkers for understanding OA, reflecting degradation and formation of the joint tissues, focused on type II collagen and aggrecan. There is still a lack of in vitro diagnostics, in all contexts of use.


Assuntos
Cartilagem Articular , Osteoartrite , Agrecanas , Biomarcadores , Colágeno Tipo II , Humanos , Osteoartrite/diagnóstico
14.
Ann Rheum Dis ; 81(5): 666-675, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246457

RESUMO

OBJECTIVES: Osteoarthritis (OA) patient stratification is an important challenge to design tailored treatments and drive drug development. Biochemical markers reflecting joint tissue turnover were measured in the IMI-APPROACH cohort at baseline and analysed using a machine learning approach in order to study OA-dominant phenotypes driven by the endotype-related clusters and discover the driving features and their disease-context meaning. METHOD: Data quality assessment was performed to design appropriate data preprocessing techniques. The k-means clustering algorithm was used to find dominant subgroups of patients based on the biochemical markers data. Classification models were trained to predict cluster membership, and Explainable AI techniques were used to interpret these to reveal the driving factors behind each cluster and identify phenotypes. Statistical analysis was performed to compare differences between clusters with respect to other markers in the IMI-APPROACH cohort and the longitudinal disease progression. RESULTS: Three dominant endotypes were found, associated with three phenotypes: C1) low tissue turnover (low repair and articular cartilage/subchondral bone turnover), C2) structural damage (high bone formation/resorption, cartilage degradation) and C3) systemic inflammation (joint tissue degradation, inflammation, cartilage degradation). The method achieved consistent results in the FNIH/OAI cohort. C1 had the highest proportion of non-progressors. C2 was mostly linked to longitudinal structural progression, and C3 was linked to sustained or progressive pain. CONCLUSIONS: This work supports the existence of differential phenotypes in OA. The biomarker approach could potentially drive stratification for OA clinical trials and contribute to precision medicine strategies for OA progression in the future. TRIAL REGISTRATION NUMBER: NCT03883568.


Assuntos
Reabsorção Óssea , Cartilagem Articular , Osteoartrite do Joelho , Biomarcadores , Análise por Conglomerados , Progressão da Doença , Humanos , Inflamação , Osteoartrite do Joelho/tratamento farmacológico
15.
Rheumatology (Oxford) ; 62(1): 147-157, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35575381

RESUMO

OBJECTIVES: The IMI-APPROACH knee osteoarthritis study used machine learning (ML) to predict structural and/or pain progression, expressed by a structural (S) and pain (P) predicted-progression score, to select patients from existing cohorts. This study evaluates the actual 2-year progression within the IMI-APPROACH, in relation to the predicted-progression scores. METHODS: Actual structural progression was measured using minimum joint space width (minJSW). Actual pain (progression) was evaluated using the Knee injury and Osteoarthritis Outcomes Score (KOOS) pain questionnaire. Progression was presented as actual change (Δ) after 2 years, and as progression over 2 years based on a per patient fitted regression line using 0, 0.5, 1 and 2-year values. Differences in predicted-progression scores between actual progressors and non-progressors were evaluated. Receiver operating characteristic (ROC) curves were constructed and corresponding area under the curve (AUC) reported. Using Youden's index, optimal cut-offs were chosen to enable evaluation of both predicted-progression scores to identify actual progressors. RESULTS: Actual structural progressors were initially assigned higher S predicted-progression scores compared with structural non-progressors. Likewise, actual pain progressors were assigned higher P predicted-progression scores compared with pain non-progressors. The AUC-ROC for the S predicted-progression score to identify actual structural progressors was poor (0.612 and 0.599 for Δ and regression minJSW, respectively). The AUC-ROC for the P predicted-progression score to identify actual pain progressors were good (0.817 and 0.830 for Δ and regression KOOS pain, respectively). CONCLUSION: The S and P predicted-progression scores as provided by the ML models developed and used for the selection of IMI-APPROACH patients were to some degree able to distinguish between actual progressors and non-progressors. TRIAL REGISTRATION: ClinicalTrials.gov, https://clinicaltrials.gov, NCT03883568.


Assuntos
Osteoartrite do Joelho , Humanos , Progressão da Doença , Dor/etiologia , Articulações , Articulação do Joelho
16.
Aging Clin Exp Res ; 34(9): 1985-1995, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864304

RESUMO

Hand osteoarthritis is the most common joint condition and is associated with significant morbidity. It is of paramount importance that patients are thoroughly assessed and examined when complaining of hand stiffness, pain, deformity or disability and that the patient's concerns and expectations are addressed by the healthcare professional. In 2019 the American College of Rheumatology and Arthritis Foundation (ACR/AF) produced guidelines which included recommendations for the treatment of hand osteoarthritis. An ESCEO expert working group (including patients) was convened and composed this paper with the aim to assess whether these guidelines were appropriate for the treatment of hand osteoarthritis therapy in Europe and whether they met with the ESCEO patient-centered approach. Indeed, patients are the key stakeholders in healthcare and eliciting the patient's preference is vital in the context of an individual consultation but also for informing research and policy-making. The patients involved in this working group emphasised the often-neglected area of aesthetic changes in hand osteoarthritis, importance of developing pharmacological therapies which can alleviate pain and disability and the need of the freedom to choose which approach (out of pharmacological, surgical or non-pharmacological) they wished to pursue. Following robust appraisal, it was recommended that the ACR/AF guidelines were suitable for a European context (as described within the body of the manuscript) and it was emphasised that patient preferences are key to the success of individual consultations, future research and future policy-making.


Assuntos
Osteoartrite do Joelho , Europa (Continente) , Medicina Baseada em Evidências , Humanos , Osteoartrite do Joelho/terapia , Assistência Centrada no Paciente , Encaminhamento e Consulta
17.
J Cell Physiol ; 236(11): 7421-7439, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008188

RESUMO

Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.


Assuntos
Cartilagem Articular/metabolismo , Movimento Celular , Condrócitos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osteoartrite do Joelho/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Sinalização do Cálcio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo
18.
Lab Invest ; 101(12): 1550-1560, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33767361

RESUMO

C-reactive protein (CRP) is an acute-phase protein that is used as an established biomarker to follow disease severity and progression in a plethora of inflammatory diseases. However, its pathophysiologic mechanisms of action are still poorly defined and remain elusive. CRP, in its pentameric form, exhibits weak anti-inflammatory activity. On the contrary, the monomeric isoform (mCRP) exhibits potent pro-inflammatory properties in endothelial cells, leukocytes, and platelets. So far, no data exists regarding mCRP effects in human or mouse chondrocytes. This work aimed to verify the pathophysiological relevance of mCRP in the etiology and/or progression of osteoarthritis (OA). We investigated the effects of mCRP in cultured human primary chondrocytes and in the chondrogenic ATDC5 mouse cell line. We determined mRNA and protein levels of relevant factors involved in inflammatory responses and the modulation of nitric oxide synthase type II (NOS2), an early inflammatory molecular target. We demonstrate, for the first time, that monomeric C reactive protein increases NOS2, COX2, MMP13, VCAM1, IL-6, IL-8, and LCN2 expression in human and murine chondrocytes. We also demonstrated that NF-kB is a key factor in the intracellular signaling of mCRP-driven induction of pro-inflammatory and catabolic mediators in chondrocytes. We concluded that mCRP exerts a sustained catabolic effect on human and murine chondrocytes, increasing the expression of inflammatory mediators and proteolytic enzymes, which can promote extracellular matrix (ECM) breakdown in healthy and OA cartilage. In addition, our results implicate the NF-kB signaling pathway in catabolic effects mediated by mCRP.


Assuntos
Proteína C-Reativa/fisiologia , Condrócitos/fisiologia , Inflamação , Animais , Linhagem Celular , Humanos , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/etiologia , Cultura Primária de Células
19.
Curr Rheumatol Rep ; 23(11): 78, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34716494

RESUMO

PURPOSE OF REVIEW: Osteoarthritis (OA) is the most common forms of arthritis in the general population, accounting for more pain and functional disability than any other musculoskeletal disease. There are currently no approved disease modifying drugs for OA. In the absence of effective pharmacotherapy, many patients with OA turn to nutritional supplements and nutraceuticals, including collagen derivatives. Collagen hydrolyzates and ultrahydrolyzates are terms used to describe collagens that have been broken down into small peptides and amino acids in the presence of collagenases and high pressure. RECENT FINDINGS: This article reviews the relevant literature and serves as a White Paper on collagen hydrolyzates and ultrahydrolyzates as emerging supplements often advertised to support joint health in OA. Collagen hydrolyzates have demonstrated some evidence of efficacy in a handful of small scale clinical trials, but their ability to treat and reverse advanced joint disease remains highly speculative, as is the case for other nutritional supplements. The aim of this White Paper is to stimulate research and development of collagen-based supplements for patients with OA and other musculoskeletal diseases at academic and industrial levels. This White Paper does not make any treatment recommendations for OA patients in the clinical context, but simply aims to highlight opportunities for scientific innovation and interdisciplinary collaboration, which are crucial for the development of novel products and nutritional interventions based on the best available and published evidence.


Assuntos
Artropatias , Osteoartrite , Colágeno , Suplementos Nutricionais , Humanos , Osteoartrite/tratamento farmacológico , Dor
20.
J Biochem Mol Toxicol ; 35(7): e22795, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33973313

RESUMO

The world is currently facing an unprecedented pandemic caused by a newly recognized and highly pathogenic coronavirus disease 2019 (COVID-19; induced by SARS-CoV-2 virus), which is a severe and ongoing threat to global public health. Since COVID-19 was officially declared a pandemic by the World Health Organization in March 2020, several drug regimens have rapidly undergone clinical trials for the management of COVID-19. However, one of the major issues is drug-induced organ injury, which is a prominent clinical challenge. Unfortunately, most drugs used against COVID-19 are associated with adverse effects in different organs, such as the kidney, heart, and liver. These side effects are dangerous and, in some cases, they can be lethal. More importantly, organ injury is also a clinical manifestation of COVID-19 infection. These adverse reactions are increasingly recognized as outcomes of COVID-19 infection. Therefore, the differential diagnosis of drug-induced adverse effects from COVID-19-induced organ injury is a clinical complication. This review highlights the importance of drug-induced organ injury, its known mechanisms, and the potential therapeutic strategies in COVID-19 pharmacotherapy. We review the potential strategies for the differential diagnosis of drug-induced organ injury. This information can facilitate the development of therapeutic strategies, not only against COVID-19 but also for future outbreaks of other emerging infectious diseases.


Assuntos
Antivirais/efeitos adversos , Tratamento Farmacológico da COVID-19 , Biomarcadores/análise , COVID-19/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/lesões , Diagnóstico Diferencial , Humanos , Inflamação , Rim/efeitos dos fármacos , Rim/lesões , Fígado/efeitos dos fármacos , Fígado/lesões , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA