Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancer Immunol Immunother ; 70(5): 1343-1350, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141285

RESUMO

Immune checkpoint blocking (ICB) is a promising new tool of cancer treatment. Yet, the underlying therapeutic mechanisms are not fully understood. Here we investigated the role of dendritic cells (DCs) for the therapeutic effect of ICB in a λ-MYC-transgenic mouse model of endogenously arising B-cell lymphoma. The growth of these tumors can be effectively delayed by antibodies against CTLA-4 and PD-1. Tumor-infiltrating DCs from mice having received therapy showed an upregulation of costimulatory molecules as well as an augmented IL-12/IL-10 ratio as compared to untreated controls. Both alterations seemed to be induced by interferon-γ (IFN-γ), which is upregulated in T cells and natural killer cells upon ICB. Furthermore, the enhanced IL-12/IL-10 ratio, which favors Th1-prone antitumor T-cell responses, was a consequence of direct interaction of ICB antibodies with DCs. Importantly, the capability of tumor-infiltrating DCs of stimulating peptide-specific or allogeneic T-cell responses in vitro was improved when DCs were derived from ICB-treated mice. The data indicate that ICB therapy is not only effective by directly activating T cells, but also by triggering a complex network, in which DCs play a pivotal role at the interface between innate and adaptive antitumor responses.


Assuntos
Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfoma de Células B/imunologia , Animais , Antígeno CTLA-4/imunologia , Células Cultivadas , Modelos Animais de Doenças , Quimioterapia Combinada , Genes myc/genética , Humanos , Linfoma de Células B/cirurgia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia
2.
Blood ; 132(23): 2484-2494, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30275109

RESUMO

The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models. Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1 (PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune resistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at the expense of broadly distributed immune-related adverse events (irAEs). We developed a bifunctional checkpoint inhibitory T cell-engaging (CiTE) antibody that combines T-cell redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds a low affinity to PD-L1, to an αCD3.αCD33 BiTE-like scaffold. By a synergistic effect of checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell activation (3.3-fold elevation of interferon-γ) and leads to efficient and highly selective cytotoxicity against CD33+PD-L1+ cell lines (50% effective concentration = 2.3-26.9 pM) as well as patient-derived AML cells (n = 8). In a murine xenograft model, the CiTE induces complete AML eradication without initial signs of irAEs as measured by body weight loss. We conclude that our molecule preferentially targets AML cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L1+ non-AML cells. By combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic potential, particularly for patients with relapsed/ refractory AML.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Complexo CD3 , Leucemia Mieloide Aguda , Receptor de Morte Celular Programada 1 , Proteínas Recombinantes de Fusão , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Anticorpos de Cadeia Única , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23376950

RESUMO

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Assuntos
Senescência Celular/imunologia , Citocinas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Células Th1/imunologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Ciclo Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Oncogenes/genética , Fosfosserina/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Fator de Transcrição STAT1/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/metabolismo
4.
Int J Cancer ; 140(9): 2125-2133, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28195314

RESUMO

Like other immune cells, natural killer (NK) cells show impaired effector functions in the microenvironment of tumors, but little is known on the underlying mechanisms. Since lactate acidosis, a hallmark of malignant tissue, was shown to contribute to suppression of effective antitumor immune responses, we investigated the impact of tissue pH and lactate concentration on NK-cell functions in an aggressive model of endogenously arising B-cell lymphoma. The progressive loss of IFN-γ production by NK cells observed during development of this disease could be ascribed to decreased pH values and lactate accumulation in the microenvironment of growing tumors. Interestingly, IFN-γ expression by lymphoma-derived NK cells could be restored by transfer of these cells into a normal micromilieu. Likewise, systemic alkalization by oral delivery of bicarbonate to lymphoma-developing mice was capable of enhancing IFN-γ expression in NK cells and increasing the NK-cell numbers in the lymphoid organs where tumors were growing. By contrast, NK-cell cytotoxicity was dampened in vivo by tumor-dependent mechanisms that seemed to be different from lactate acidosis and could not be restored in a normal milieu. Most importantly, alkalization and the concomitant IFN-γ upregulation in NK cells were sufficient to significantly delay tumor growth without any other immunotherapy. This effect was strictly dependent on NK cells.


Assuntos
Acidose/genética , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Ácido Láctico/metabolismo , Linfoma de Células B/imunologia , Acidose/imunologia , Animais , Citotoxicidade Imunológica/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Imunidade Celular/genética , Imunoterapia , Interferon gama/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Microambiente Tumoral/genética
5.
Eur J Immunol ; 45(9): 2593-601, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26151313

RESUMO

Little is known on the control of lymphomas by NK cells. Here, we study the role of the NK group 2D (NKG2D) receptor for the immunosurveillance of lymphoma. By using transplantable tumors as well as a λ-myc-transgenic model of endogenously arising lymphoma and NKG2D-deficient mice, we show that NK cells eliminate tumor cells in vivo after receiving two signals. One step involved the activation of NK cells giving rise to IFN-γ expression, which was effected by MHCI(low) tumor cells or DCs. However, this was necessary but not sufficient to mediate cytotoxicity. Triggering cytotoxicity additionally required a second step, which could be mediated by engagement of the NKG2D receptor. Thus, NKG2D-deficient NK cells could become activated in vivo, but they were not able to reject transplanted lymphomas or to degranulate in animals bearing autochthonous lymphomas. Tumor growth in NKG2D-deficient λ-myc-transgenic mice was significantly accelerated compared to NKG2D-competent animals. Whereas the latter developed tumors that lost expression of NKG2D ligands (NKG2D-L) in late disease stages, this did not occur in NKG2D-deficient mice. This indicates that NK cells and the NKG2D receptor play a role for control of lymphomas and that selection for NKG2D-L loss mutants provides a mechanism of tumor escape.


Assuntos
Proteínas de Transporte/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Evasão Tumoral/genética , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/genética , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Ativação Linfocitária , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Transplante de Neoplasias , Transdução de Sinais
6.
Int J Cancer ; 135(12): 2825-33, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771135

RESUMO

It is well established that an interplay between natural killer (NK) cells and dendritic cells (DCs) gives rise to their reciprocal activation and provides a Th1-biased cytokine milieu that fosters antitumor T-cell responses. Ex vivo-differentiated DCs transferred into mice strongly stimulate endogenous NK cells to produce interferon (IFN)-γ and initiate a cascade that eventually leads to cytotoxic T-lymphocyte responses. We show that the ability of exogenous DCs to trigger this pathway obviates CD40 signaling and CD4(+) T-cell help and depends on a preceding maturation step. Importantly, this mechanism was also effective in endogenously arising tumors where IFN-γ production is compromised in contrast to transplantable tumors. In c-myc-transgenic mice developing spontaneous lymphomas, injection of unpulsed DCs caused NK-cell activation and induced CD8(+) T cells capable of recognizing the lymphoma cells. Animals treated with unpulsed DCs showed a survival benefit compared to untreated myc mice. Hence, tumor immunity induced by DC-based vaccines not only depends on specific antigens loaded on the DCs. Rather, DC vaccines generate broader immune responses, because endogenous DCs presenting tumor antigens may also become stimulated by NK cells that were activated by exogenous DCs. Thus, the DC/NK-cell/cytotoxic T lymphocyte axis may commonly have relevance for DC-based vaccination protocols in clinical settings.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Genes myc , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias
7.
Cancer Immunol Immunother ; 63(5): 491-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638151

RESUMO

Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.


Assuntos
Citocinas/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Microambiente Tumoral/imunologia , Animais , Células 3T3 BALB , Citocinas/biossíntese , Citometria de Fluxo , Genes myc , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncogenes
8.
Proc Natl Acad Sci U S A ; 108(2): 733-8, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21187371

RESUMO

Immunization of mice with a 14-mer peptide TKDNNLLGRFELSG, termed "TKD," comprising amino acids 450-461 (aa(450-461)) in the C terminus of inducible Hsp70, resulted in the generation of an IgG1 mouse mAb cmHsp70.1. The epitope recognized by cmHsp70.1 mAb, which has been confirmed to be located in the TKD sequence by SPOT analysis, is frequently detectable on the cell surface of human and mouse tumors, but not on isogenic cells and normal tissues, and membrane Hsp70 might thus serve as a tumor-specific target structure. As shown for human tumors, Hsp70 is associated with cholesterol-rich microdomains in the plasma membrane of mouse tumors. Herein, we show that the cmHsp70.1 mAb can selectively induce antibody-dependent cellular cytotoxicity (ADCC) of membrane Hsp70(+) mouse tumor cells by unstimulated mouse spleen cells. Tumor killing could be further enhanced by activating the effector cells with TKD and IL-2. Three consecutive injections of the cmHsp70.1 mAb into mice bearing CT26 tumors significantly inhibited tumor growth and enhanced the overall survival. These effects were associated with infiltrations of NK cells, macrophages, and granulocytes. The Hsp70 specificity of the ADCC response was confirmed by preventing the antitumor response in tumor-bearing mice by coinjecting the cognate TKD peptide with the cmHsp70.1 mAb, and by blocking the binding of cmHsp70.1 mAb to CT26 tumor cells using either TKD peptide or the C-terminal substrate-binding domain of Hsp70.


Assuntos
Proteínas de Choque Térmico HSP70/química , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Colesterol/química , Granulócitos/citologia , Humanos , Interleucina-2/metabolismo , Células Matadoras Naturais/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Ligação Proteica , Estrutura Terciária de Proteína
9.
Mol Med ; 19: 54-61, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23552725

RESUMO

Trifunctional bispecific antibodies (trAbs) used in tumor immunotherapy have the unique ability to recruit T cells toward antigens on the tumor cell surface and, moreover, to activate accessory cells through their immunoglobulin Fc region interacting with activating Fcγ receptors. This scenario gives rise to additional costimulatory signals required for T cell-mediated tumor cell destruction and induction of an immunologic memory. Here we show in an in vitro system that most effective trAb-dependent T-cell activation and tumor cell elimination are achieved in the presence of dendritic cells (DCs). On the basis of these findings, we devise a novel approach of cancer immunotherapy that combines the specific advantages of trAbs with those of DC-based vaccination. Simultaneous delivery of trAbs and in vitro differentiated DCs resulted in a markedly improved tumor rejection in a murine melanoma model compared with monotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Células Dendríticas/imunologia , Imunoterapia , Melanoma/terapia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL
10.
J Transl Med ; 10: 219, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23134699

RESUMO

BACKGROUND: Trifunctional bispecific antibodies (trAb) are a special class of bispecific molecules recruiting and activating T cells and accessory immune cells simultaneously at the targeted tumor. The new trAb Ektomab that targets the melanoma-associated ganglioside antigen GD2 and the signaling molecule human CD3 (hCD3) on T cells demonstrated potent T-cell activation and tumor cell destruction in vitro. However, the relatively low affinity for the GD2 antigen raised the question of its therapeutic capability. To further evaluate its efficacy in vivo it was necessary to establish a mouse model. METHODS: We generated the surrogate trAb Surek, which possesses the identical anti-GD2 binding arm as Ektomab, but targets mouse CD3 (mCD3) instead of hCD3, and evaluated its chemical and functional quality as a therapeutic antibody homologue. The therapeutic and immunizing potential of Surek was investigated using B78-D14, a B16 melanoma transfected with GD2 and GD3 synthases and showing strong GD2 surface expression. The induction of tumor-associated and autoreactive antibodies was evaluated. RESULTS: Despite its low affinity of approximately 10(7) M(-1) for GD2, Surek exerted efficient tumor cell destruction in vitro at an EC(50) of 70 ng/ml [0.47 nM]. Furthermore, Surek showed strong therapeutic efficacy in a dose-dependent manner and is superior to the parental GD2 mono-specific antibody, while the use of a control trAb with irrelevant target specificity had no effect. The therapeutic activity of Surek was strictly dependent on CD4(+) and CD8(+) T cells, and cured mice developed a long-term memory response against a second challenge even with GD2-negative B16 melanoma cells. Moreover, tumor protection was associated with humoral immune responses dominated by IgG2a and IgG3 tumor-reactive antibodies indicating a Th1-biased immune response. Autoreactive antibodies against the GD2 target antigen were not induced. CONCLUSION: Our data suggest that Surek revealed strong tumor elimination and anti-tumor immunization capabilities. The results warrant further clinical development of the human therapeutic equivalent antibody Ektomab.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Especificidade de Anticorpos/imunologia , Gangliosídeos/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Transferência Adotiva , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Anticorpos Antineoplásicos/uso terapêutico , Citotoxicidade Imunológica/efeitos dos fármacos , Relação Dose-Resposta Imunológica , Humanos , Soros Imunes , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunização , Imunoglobulina G/imunologia , Melanoma/sangue , Camundongos , Neoplasias Cutâneas/sangue , Análise de Sobrevida , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fatores de Tempo , Resultado do Tratamento
11.
Eur J Immunol ; 40(2): 494-504, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19950185

RESUMO

The role of NK cells in the control of endogenously arising tumors is still unclear. We monitored activation and effector functions of NK cells in a c-myc-transgenic mouse model of spontaneously arising lymphoma. At early stages, tumors demonstrated reduced MHC class I expression and increased expression of natural killer group 2D ligands (NKG2D-L). NK cells in these tumors showed an activated phenotype that correlated with the loss of tumor MHC class I. With increasing tumor load however, NK-cell effector functions became progressively paralyzed or exhausted. In later stages of disease, tumors re-expressed MHC class I and lost NKG2D-L, suggesting a role of these two signals for NK cell-mediated tumor control. Testing a panel of lymphoma cell lines expressing various MHC class I and NKG2D-L levels suggested that NK cell-dependent tumor control required a priming and a triggering signal that were provided by MHC class I down-regulation and by NKG2D-L, respectively. Deleting either of the "two signals" resulted in tumor escape. At early disease stages, immune stimulation through TLR-ligands in vivo efficiently delayed lymphoma growth in a strictly NK cell-dependent manner. Thus, NK-receptor coengagement is crucial for NK-cell functions in vivo and especially for NK cell-mediated tumor surveillance.


Assuntos
Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Genes myc/genética , Antígenos H-2/imunologia , Antígenos H-2/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Evasão Tumoral/imunologia
12.
Blood ; 113(15): 3494-502, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19188665

RESUMO

Experimental tumor vaccination and adoptive T-cell therapies show that interferon-gamma (IFN-gamma)-producing CD4(+) T helper cells (Th1) can be highly effective in tumor prevention and therapy. Unexpectedly, first vaccine trials in humans revealed that tumor immune therapy may not only be protective, but, on the contrary, even promote tumor progression. Here, we analyzed T-cell immune responses to the epithelial cell adhesion molecule (EpCAM), one of the most common tumor-associated antigens (TAA) serving as immune target in colon cancer patients. Th-cell priming against EpCAM inevitably resulted in interleukin-4 (IL-4)-dominated Th2 responses, even under most stringent Th1-inducing conditions. These EpCAM-reactive Th2 cells rather promoted growth of EpCAM-expressing tumors. To analyze the role of IL-4 in tumor immune evasion, we generated EpCAM-reactive Th1 cells from IL-4.ko mice. These Th1 cells provided tumor-specific protection and established highly protective Th1 memory responses, even in naive BALB/c mice. Inhibition of tumor growth by Th1 cells resulted in intra-tumoral expression of cytokines of the IL-12 family and of IFN-gamma. Preventing activation-associated death of Th1 cells further increased intratumoral IFN-gamma expression and improved therapeutic efficacy. Thus, human TAA may promote tumor immune evasion by strongly favoring Th2 development.


Assuntos
Transferência Adotiva/métodos , Antígenos de Neoplasias/imunologia , Moléculas de Adesão Celular/imunologia , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Células Th2/citologia , Animais , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Moléculas de Adesão Celular/genética , Morte Celular/imunologia , Diferenciação Celular/imunologia , Divisão Celular/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias do Colo/patologia , Molécula de Adesão da Célula Epitelial , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas In Vitro , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transplante de Neoplasias , Células Th1/citologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
13.
J Immunol ; 183(10): 6078-86, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19890064

RESUMO

RNA oligonucleotides containing immune-activating sequences promote the development of cytotoxic T cell and B cell responses to Ag. In this study, we show for the first time that immunostimulatory RNA oligonucleotides induce a NK cell response that prevents growth of NK-sensitive tumors. Treatment of mice with immunostimulatory RNA oligonucleotides activates NK cells in a sequence-dependent manner, leading to enhanced IFN-gamma production and increased cytotoxicity. Use of gene-deficient mice showed that NK activation is entirely TLR7-dependent. We further demonstrate that NK activation is indirectly induced through IL-12 and type I IFN production by dendritic cells. Reconstitution of TLR7-deficient mice with wild-type dendritic cells restores NK activation upon treatment with immunostimulatory RNA oligonucleotides. Thus, by activating both NK cells and CTLs, RNA oligonucleotides stimulate two major cellular effectors of antitumor immunity. This dual activation may enhance the efficacy of immunotherapeutic strategies against cancer by preventing the development of tumor immune escape variants.


Assuntos
Adjuvantes Imunológicos , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Oligorribonucleotídeos/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/imunologia , Interferon gama/biossíntese , Interferon gama/efeitos dos fármacos , Interferon gama/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Oligorribonucleotídeos/farmacologia , Poli A/imunologia , Poli A/farmacologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
14.
Transl Oncol ; 14(9): 101170, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34229208

RESUMO

In malignant disease, CD4+Foxp3+ regulatory T cells (Tregs) hamper antitumor immune responses and may provide a target for immunotherapy. Although immune checkpoint blockade (ICB) has become an established therapy for several cancer entities including lymphoma, its mechanisms have not been entirely uncovered. Using endogenously arising λ-MYC-transgenic mouse B-cell lymphomas, which can effectively be suppressed by either Treg ablation or ICB, we investigated which mechanisms are used by Tregs to suppress antitumor responses and how ICB affects these pathways. During tumor development, Tregs up-regulated Foxp3, CD25, CTLA-4 and IL-10, which correlated with enhanced immunosuppressive functions. Thus, in contrast to other tumors, Tregs did not become dysfunctional despite chronic stimulation in the tumor microenvironment and progressive up-regulation of PD-1. Immunosuppression was mediated by direct contacts between Tregs and effector T cells and by IL-10. When λ-MYC mice were treated with ICB antibodies, Tregs revealed a less profound up-regulation of Foxp3, CD25 and IL-10 and a decreased suppressive capacity. This may be due to the shift towards a pro-inflammatory milieu fostered by ICB. In summary, an ICB-induced interference with Treg-dependent immunosuppression may contribute to the success of ICB.

15.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33441389

RESUMO

BACKGROUND: Although antibodies blocking immune checkpoints have already been approved for clinical cancer treatment, the mechanisms involved are not yet completely elucidated. Here we used a λ-MYC transgenic model of endogenously growing B-cell lymphoma to analyze the requirements for effective therapy with immune checkpoint inhibitors. METHODS: Growth of spontaneous lymphoma was monitored in mice that received antibodies targeting programmed cell death protein 1 and cytotoxic T lymphocyte-associated protein-4, and the role of different immune cell compartments and cytokines was studied by in vivo depletion experiments. Activation of T and natural killer cells and the induction of tumor senescence were analyzed by flow cytometry. RESULTS: On immune checkpoint blockade, visible lymphomas developed at later time points than in untreated controls, indicating an enhanced tumor control. Importantly, 20% to 30% of mice were even long-term protected and did never develop clinical signs of tumor growth. The therapeutic effect was dependent on cytokine-induced senescence in malignant B cells. The proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor (TNF) were necessary for the survival benefit as well as for senescence induction in the λ-MYC model. Antibody therapy improved T-cell functions such as cytokine production, and long-time survivors were only observed in the presence of T cells. Yet, NK cells also had a pronounced effect on therapy-induced delay of tumor growth. Antibody treatment enhanced numbers, proliferation and IFN-γ expression of NK cells in developing tumors. The therapeutic effect was fully abrogated only after depletion of both, T cells and NK cells, or after ablation of either IFN-γ or TNF. CONCLUSIONS: Tumor cell senescence may explain why patients responding to immune checkpoint blockade frequently show stable growth arrest of tumors rather than complete tumor regression. In the lymphoma model studied, successful therapy required both, tumor-directed T-cell responses and NK cells, which control, at least partly, tumor development through cytokine-induced tumor senescence.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Citocinas/metabolismo , Inibidores de Checkpoint Imunológico/administração & dosagem , Células Matadoras Naturais/efeitos dos fármacos , Linfoma/tratamento farmacológico , Nivolumabe/administração & dosagem , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Proliferação de Células , Senescência Celular , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Linfoma/imunologia , Camundongos , Nivolumabe/farmacologia , Linfócitos T/imunologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 503: 110-116, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33524501

RESUMO

To establish strategies for immunotherapy of B-cell lymphoma, it is mandatory to gain deeper insights into the mechanisms of tumor immune escape. In a mouse model of endogenously arising lymphoma, we investigated the impact of IL-10 on the regulation of antitumor responses. Despite progressive functional impairment of NK cells and lack of IFN-γ in the tumor milieu, we found an augmented fraction of T helper type 1 (Th1) cells, which continued to express IFN-γ but also upregulated IL-10 during disease development. Using a lymphoma microenvironment in vitro, we showed that Th1 cells were converted to Foxp3-negative T regulatory type 1 (Tr1) cells, which coexpressed IFN-γ and IL-10 and upregulated PD-1. This differentiation required pre-existing IL-10, which was primarily provided by malignant B cells and dendritic cells. IFN-γ only declined in cells with the uppermost PD-1 levels. Importantly, antibody-mediated IL-10 ablation in vivo improved effector cell functions and significantly suppressed tumor development. While the contribution of IL-10 to cancer immune escape has been controversially discussed in the past, we show that IL-10 suppresses ongoing, potentially protective immune responses in lymphoma and might be a target for immunotherapy.


Assuntos
Interferon gama/metabolismo , Interleucina-10/metabolismo , Linfoma de Células B/genética , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular , Células Dendríticas/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Linfoma de Células B/imunologia , Camundongos , Evasão Tumoral , Microambiente Tumoral , Regulação para Cima
17.
Nat Commun ; 11(1): 1335, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165639

RESUMO

Immune checkpoint blockade (ICB)-based or natural cancer immune responses largely eliminate tumours. Yet, they require additional mechanisms to arrest those cancer cells that are not rejected. Cytokine-induced senescence (CIS) can stably arrest cancer cells, suggesting that interferon-dependent induction of senescence-inducing cell cycle regulators is needed to control those cancer cells that escape from killing. Here we report in two different cancers sensitive to T cell-mediated rejection, that deletion of the senescence-inducing cell cycle regulators p16Ink4a/p19Arf (Cdkn2a) or p21Cip1 (Cdkn1a) in the tumour cells abrogates both the natural and the ICB-induced cancer immune control. Also in humans, melanoma metastases that progressed rapidly during ICB have losses of senescence-inducing genes and amplifications of senescence inhibitors. Metastatic cells also resist CIS. Such genetic and functional alterations are infrequent in metastatic melanomas regressing during ICB. Thus, activation of tumour-intrinsic, senescence-inducing cell cycle regulators is required to stably arrest cancer cells that escape from eradication.


Assuntos
Ciclo Celular , Senescência Celular , Interferons/metabolismo , Melanoma/imunologia , Melanoma/patologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Imunoterapia , Antígeno Ki-67/metabolismo , Linfonodos/patologia , Melanoma/terapia , Melanoma/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/metabolismo , Análise de Sobrevida , Carga Tumoral
18.
Cancer Immunol Res ; 7(4): 600-608, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894379

RESUMO

Foxp3+ regulatory T cells (Tregs) sustain immune homeostasis and may contribute to immune escape in malignant disease. As a prerequisite for developing immunologic approaches in cancer therapy, it is necessary to understand the ontogeny and the antigenic specificities of tumor-infiltrating Tregs. We addressed this question by using a λ-MYC transgenic mouse model of endogenously arising B-cell lymphoma, which mirrors key features of human Burkitt lymphoma. We show that Foxp3+ Tregs suppress antitumor responses in endogenous lymphoma. Ablation of Foxp3+ Tregs significantly delayed tumor development. The ratio of Treg to effector T cells was elevated in growing tumors, which could be ascribed to differential proliferation. The Tregs detected were mainly natural Tregs that apparently recognized self-antigens. We identified MHC class II-restricted nonmutated self-epitopes, which were more prevalent in lymphoma than in normal B cells and could be recognized by Tregs. These epitopes were derived from proteins that are associated with cellular processes related to malignancy and may be overexpressed in the tumor.


Assuntos
Linfoma de Células B/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Animais , Antígenos/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/imunologia
19.
Int J Cancer ; 122(10): 2280-5, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18224683

RESUMO

Tumor-specific T cells are crucial for immunologic control of malignant disease. T cells can be induced in vivo by vaccination or adoptively transferred after activation ex vivo. We investigated the requirements for generating T cells with optimal antitumor effector functions in a murine lymphoma model. Using adoptive transfer, we show that in vivo efficacy of T cells cannot be predicted by tumor reactivity in vitro. A restricted T-cell receptor beta chain repertoire of T-cell populations stimulated ex vivo against tumor cells was necessary but not sufficient for tumor protectivity. Tumor elimination furthermore required vaccination of donor mice, hence in vivo priming. The in vivo priming step may allow tumor-specific T cells to accumulate in vitro more rapidly and to survive for longer periods after withdrawal of the antigenic stimulus and adoptive transfer. A possible survival benefit of in vivo induced T cells may be ascribed to the responsiveness to homeostatic cytokines and to unique cytokine milieus encountered in vivo. Most importantly, monoclonal T cells cannot inhibit tumor growth. A prerequisite of tumor rejection was the expression of at least 2 T-cell receptor beta chains by transferred T-cell populations. This finding has implications for designing adoptive transfer strategies for the clinic.


Assuntos
Transferência Adotiva , Linfoma de Células B/imunologia , Linfoma de Células B/prevenção & controle , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Citometria de Fluxo , Memória Imunológica , Interferon gama/metabolismo , Ativação Linfocitária , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Linfócitos T/patologia , Vacinação
20.
J Transl Med ; 5: 16, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17359532

RESUMO

BACKGROUND: Dendritic cells (DC) pulsed with tumor-derived antigenic material have widely been used in antitumor vaccination protocols. However, the optimal strategy of DC loading has not yet been established. Our aim was to define requirements of optimal DC vaccines in terms of in vivo protection in a murine B-cell lymphoma model. METHODS: We compare various loading reagents including whole parental and modified tumor cells and a single tumor-specific antigen, namely the lymphoma idiotype (Id). Bone marrow-derived DC were pulsed in vitro and used for therapy of established A20 lymphomas. RESULTS: We show that a vaccine with superior antitumor efficacy can be generated when DC are loaded with whole modified tumor cells which provide both (i) antigenic polyvalency and (ii) receptor-mediated antigen internalization. Uptake of cellular material was greatly enhanced when the tumor cells used for DC pulsing were engineered to express an anti-Fc receptor immunoglobulin specificity. Upon transfer of these DC, established tumor burdens were eradicated in 50% of mice. By contrast, pulsing DC with unmodified lymphoma cells or with the lymphoma Id, even when it was endowed with the anti-Fc receptor binding arm, was far less effective. A specific humoral anti-Id response could be detected, particularly following delivery of Id protein-pulsed DC, but it was not predictive of tumor protection. Instead a T-cell response was pivotal for successful tumor protection. Interaction of the transferred DC with CD8+ T lymphocytes seemed to play a role for induction of the immune response but was dispensable when DC had received an additional maturation stimulus. CONCLUSION: Our analyses show that the advantages of specific antigen redirection and antigenic polyvalency can be combined to generate DC-based vaccines with superior antitumor efficacy. This mouse model may provide information for the standardization of DC-based vaccination protocols.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Linfoma/imunologia , Animais , Proliferação de Células , Endocitose , Fluoresceínas , Imunidade/imunologia , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Succinimidas , Linfócitos T/citologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA