Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(6): 1676-1701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37483133

RESUMO

The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.


Assuntos
Brachypodium , Brachypodium/metabolismo , Biodiversidade , Temperatura , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Genome Res ; 31(2): 225-238, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33361111

RESUMO

Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.

3.
PLoS Pathog ; 17(1): e1009175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428681

RESUMO

The zig-zag model of host-pathogen interaction describes the relative strength of defense response across a spectrum of pathogen-induced plant phenotypes. A stronger defense response results in increased resistance. Here, we investigate the strength of pathogen virulence during disease and place these findings in the context of the zig-zag model. Xanthomonas vasicola pv. holcicola (Xvh) causes sorghum bacterial leaf streak. Despite being widespread, this disease has not been described in detail at the molecular level. We divided diverse sorghum genotypes into three groups based on disease symptoms: water-soaked lesions, red lesions, and resistance. Bacterial growth assays confirmed that these three phenotypes represent a range of resistance and susceptibility. To simultaneously reveal defense and virulence responses across the spectrum of disease phenotypes, we performed dual RNA-seq on Xvh-infected sorghum. Consistent with the zig-zag model, the expression of plant defense-related genes was strongest in the resistance interaction. Surprisingly, bacterial virulence genes related to the type III secretion system (T3SS) and type III effectors (T3Es) were also most highly expressed in the resistance interaction. This expression pattern was observed at multiple time points within the sorghum-Xvh pathosystem. Further, a similar expression pattern was observed in Arabidopsis infected with Pseudomonas syringae for effector-triggered immunity via AvrRps4 but not AvrRpt2. Specific metabolites were able to repress the Xvh virulence response in vitro and in planta suggesting a possible signaling mechanism. Taken together, these findings reveal multiple permutations of the continually evolving host-pathogen arms race from the perspective of host defense and pathogen virulence responses.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/microbiologia , Sorghum/microbiologia , Virulência , Xanthomonas/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Sorghum/genética , Sorghum/imunologia , Transcriptoma , Xanthomonas/genética , Xanthomonas/imunologia
4.
PLoS Genet ; 15(6): e1008209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199791

RESUMO

Plants with facultative crassulacean acid metabolism (CAM) maximize performance through utilizing C3 or C4 photosynthesis under ideal conditions while temporally switching to CAM under water stress (drought). While genome-scale analyses of constitutive CAM plants suggest that time of day networks are shifted, or phased to the evening compared to C3, little is known for how the shift from C3 to CAM networks is modulated in drought induced CAM. Here we generate a draft genome for the drought-induced CAM-cycling species Sedum album. Through parallel sampling in well-watered (C3) and drought (CAM) conditions, we uncover a massive rewiring of time of day expression and a CAM and stress-specific network. The core circadian genes are expanded in S. album and under CAM induction, core clock genes either change phase or amplitude. While the core clock cis-elements are conserved in S. album, we uncover a set of novel CAM and stress specific cis-elements consistent with our finding of rewired co-expression networks. We identified shared elements between constitutive CAM and CAM-cycling species and expression patterns unique to CAM-cycling S. album. Together these results demonstrate that drought induced CAM-cycling photosynthesis evolved through the mobilization of a stress-specific, time of day network, and not solely the phasing of existing C3 networks. These results will inform efforts to engineer water use efficiency into crop plants for growth on marginal land.


Assuntos
Adaptação Fisiológica/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Sedum/genética , Carbono/metabolismo , Ciclo do Carbono/genética , Dióxido de Carbono/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Água/química
5.
Nature ; 527(7579): 508-11, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26560029

RESUMO

Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.


Assuntos
Genoma de Planta/genética , Poaceae/genética , Análise de Sequência de DNA/métodos , Aclimatação/genética , Mapeamento de Sequências Contíguas , Desidratação , Dessecação , Secas , Genes de Plantas/genética , Genômica , Dados de Sequência Molecular
6.
Proc Natl Acad Sci U S A ; 113(31): 8861-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422554

RESUMO

Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.


Assuntos
Secas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Água/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Poaceae/genética , Poaceae/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Solo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
7.
Plant J ; 89(3): 617-635, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27754575

RESUMO

Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.


Assuntos
Araceae/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas/genética , Variação Genética , Proteínas de Plantas/genética
8.
Proc Natl Acad Sci U S A ; 112(3): 923-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561530

RESUMO

The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth.


Assuntos
Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Diferenciação Celular , Meristema/citologia , Raízes de Plantas/citologia , Biossíntese de Proteínas , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética
9.
Plant J ; 87(6): 535-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228578

RESUMO

Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Rubus/genética , Rubus/microbiologia , Centrômero/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Frutas/genética , Frutas/fisiologia , Duplicação Gênica , Genômica/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rosaceae/genética , Análise de Sequência de DNA , Verticillium/patogenicidade
10.
Plant Cell Environ ; 40(10): 2292-2306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730594

RESUMO

Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants.


Assuntos
Craterostigma/fisiologia , Dessecação , Sementes/fisiologia , Adaptação Fisiológica/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Craterostigma/genética , Craterostigma/ultraestrutura , Desidratação , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Estresse Fisiológico , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Água
11.
Plant J ; 82(6): 1061-1075, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809382

RESUMO

Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distal stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5'-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific.


Assuntos
Brachypodium/genética , Inativação Gênica , MicroRNAs/genética , Oryza/genética , Arabidopsis/genética , Clonagem Molecular , Vetores Genéticos , Sequências Repetidas Invertidas , Plantas Geneticamente Modificadas/genética , Precursores de RNA
12.
Proc Natl Acad Sci U S A ; 110(35): 14474-9, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23918368

RESUMO

Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic electron transport. Modification of redox state caused a change in expression of a common set of about 750 genes, many of which are known stress-responsive genes. Among the most highly enriched promoter elements in the induced gene set were heat-shock elements (HSEs), known motifs that change gene expression in response to high temperature in many systems. We show that HSEs from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene were necessary and sufficient for APX2 expression in conditions of excess light, or under low light plus the herbicide. We tested APX2 expression phenotypes in overexpression and loss-of-function mutants of 15 Arabidopsis A-type heat-shock transcription factors (HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors regulating APX2 expression in diverse stress conditions. Excess light regulates both the subcellular location of HSFA1D and its biochemical properties, making it a key early component of the excess light stress network of plants.


Assuntos
Arabidopsis/fisiologia , Proteínas de Choque Térmico/fisiologia , Luz , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Dibromotimoquinona/farmacologia , Regulação da Expressão Gênica de Plantas , Fotossíntese
13.
Plant J ; 79(3): 361-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24888695

RESUMO

Brachypodium distachyon is small annual grass that has been adopted as a model for the grasses. Its small genome, high-quality reference genome, large germplasm collection, and selfing nature make it an excellent subject for studies of natural variation. We sequenced six divergent lines to identify a comprehensive set of polymorphisms and analyze their distribution and concordance with gene expression. Multiple methods and controls were utilized to identify polymorphisms and validate their quality. mRNA-Seq experiments under control and simulated drought-stress conditions, identified 300 genes with a genotype-dependent treatment response. We showed that large-scale sequence variants had extremely high concordance with altered expression of hundreds of genes, including many with genotype-dependent treatment responses. We generated a deep mRNA-Seq dataset for the most divergent line and created a de novo transcriptome assembly. This led to the discovery of >2400 previously unannotated transcripts and hundreds of genes not present in the reference genome. We built a public database for visualization and investigation of sequence variants among these widely used inbred lines.


Assuntos
Brachypodium/genética , Variação Genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Secas , Transcriptoma/genética
14.
Theor Appl Genet ; 128(8): 1631-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26037086

RESUMO

KEY MESSAGE: We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.


Assuntos
Afídeos , Mapeamento Cromossômico , Ligação Genética , Rubus/genética , Animais , Cruzamento , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Genética Populacional , Herbivoria , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
15.
Proc Natl Acad Sci U S A ; 108(45): 18560-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042857

RESUMO

The circadian clock generates daily rhythms in mammalian liver processes, such as glucose and lipid homeostasis, xenobiotic metabolism, and regeneration. The mechanisms governing these rhythms are not well understood, particularly the distinct contributions of the cell-autonomous clock and central pacemaker to rhythmic liver physiology. Through microarray expression profiling in Met murine hepatocytes (MMH)-D3, we identified over 1,000 transcripts that exhibit circadian oscillations, demonstrating that the cell-autonomous clock can drive many rhythms, and that MMH-D3 is a valid circadian model system. The genes represented by these circadian transcripts displayed both cophasic and antiphasic organization within a protein-protein interaction network, suggesting the existence of competition for binding sites or partners by genes of disparate transcriptional phases. Multiple pathways displayed enrichment in MMH-D3 circadian transcripts, including the polyamine synthesis module of the glutathione metabolic pathway. The polyamine synthesis module, which is highly associated with cell proliferation and whose products are required for initiation of liver regeneration, includes enzymes whose transcripts exhibit circadian oscillations, such as ornithine decarboxylase and spermidine synthase. Metabolic profiling revealed that the enzymatic product of spermidine synthase, spermidine, cycles as well. Thus, the cell-autonomous hepatocyte clock can drive a significant amount of transcriptional rhythms and orchestrate physiologically relevant modules such as polyamine synthesis.


Assuntos
Poliaminas Biogênicas/biossíntese , Ritmo Circadiano , Hepatócitos/citologia , Transcrição Gênica , Animais , Camundongos
16.
Front Plant Sci ; 15: 1278802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807776

RESUMO

Introduction: Sorghum bicolor is a promising cellulosic feedstock crop for bioenergy due to its high biomass yields. However, early growth phases of sorghum are sensitive to cold stress, limiting its planting in temperate environments. Cold adaptability is crucial for cultivating bioenergy and grain sorghum at higher latitudes and elevations, or for extending the growing season. Identifying genes and alleles that enhance biomass accumulation under early cold stress can lead to improved sorghum varieties through breeding or genetic engineering. Methods: We conducted image-based phenotyping on 369 accessions from the sorghum Bioenergy Association Panel (BAP) in a controlled environment with early cold treatment. The BAP includes diverse accessions with dense genotyping and varied racial, geographical, and phenotypic backgrounds. Daily, non-destructive imaging allowed temporal analysis of growth-related traits and water use efficiency (WUE). A genome-wide association study (GWAS) was performed to identify genomic intervals and genes associated with cold stress response. Results: The GWAS identified transient quantitative trait loci (QTL) strongly associated with growth-related traits, enabling an exploration of the genetic basis of cold stress response at different developmental stages. This analysis of daily growth traits, rather than endpoint traits, revealed early transient QTL predictive of final phenotypes. The study identified both known and novel candidate genes associated with growth-related traits and temporal responses to cold stress. Discussion: The identified QTL and candidate genes contribute to understanding the genetic mechanisms underlying sorghum's response to cold stress. These findings can inform breeding and genetic engineering strategies to develop sorghum varieties with improved biomass yields and resilience to cold, facilitating earlier planting, extended growing seasons, and cultivation at higher latitudes and elevations.

17.
Genome Res ; 20(1): 45-58, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858364

RESUMO

Alternative splicing can enhance transcriptome plasticity and proteome diversity. In plants, alternative splicing can be manifested at different developmental stages, and is frequently associated with specific tissue types or environmental conditions such as abiotic stress. We mapped the Arabidopsis transcriptome at single-base resolution using the Illumina platform for ultrahigh-throughput RNA sequencing (RNA-seq). Deep transcriptome sequencing confirmed a majority of annotated introns and identified thousands of novel alternatively spliced mRNA isoforms. Our analysis suggests that at least approximately 42% of intron-containing genes in Arabidopsis are alternatively spliced; this is significantly higher than previous estimates based on cDNA/expressed sequence tag sequencing. Random validation confirmed that novel splice isoforms empirically predicted by RNA-seq can be detected in vivo. Novel introns detected by RNA-seq were substantially enriched in nonconsensus terminal dinucleotide splice signals. Alternative isoforms with premature termination codons (PTCs) comprised the majority of alternatively spliced transcripts. Using an example of an essential circadian clock gene, we show that intron retention can generate relatively abundant PTC(+) isoforms and that this specific event is highly conserved among diverse plant species. Alternatively spliced PTC(+) isoforms can be potentially targeted for degradation by the nonsense mediated mRNA decay (NMD) surveillance machinery or regulate the level of functional transcripts by the mechanism of regulated unproductive splicing and translation (RUST). We demonstrate that the relative ratios of the PTC(+) and reference isoforms for several key regulatory genes can be considerably shifted under abiotic stress treatments. Taken together, our results suggest that like in animals, NMD and RUST may be widespread in plants and may play important roles in regulating gene expression.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Sequência de Bases , Códon sem Sentido/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Íntrons , Dados de Sequência Molecular , Isoformas de Proteínas , Estabilidade de RNA , Análise de Sequência de RNA
18.
BMC Biotechnol ; 13: 61, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23902793

RESUMO

BACKGROUND: Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lignin composition and improved digestibility. Here, we identified and functionally characterized candidate genes encoding CAD and COMT enzymes in the grass model species Brachypodium distachyon with the aim of improving crops for efficient biofuel production. RESULTS: We developed transgenic plants overexpressing artificial microRNA designed to silence BdCAD1 or BdCOMT4. Both transgenes caused altered flowering time and increased stem count and weight. Downregulation of BdCAD1 caused a leaf brown midrib phenotype, the first time this phenotype has been observed in a C3 plant. While acetyl bromide soluble lignin measurements were equivalent in BdCAD1 downregulated and control plants, histochemical staining and thioacidolysis indicated a decrease in lignin syringyl units and reduced syringyl/guaiacyl ratio in the transgenic plants. BdCOMT4 downregulated plants exhibited a reduction in total lignin content and decreased Maule staining of syringyl units in stem. Ethanol yield by microbial fermentation was enhanced in amiR-cad1-8 plants. CONCLUSION: These results have elucidated two key genes in the lignin biosynthetic pathway in B. distachyon that, when perturbed, may result in greater stem biomass yield and bioconversion efficiency.


Assuntos
Oxirredutases do Álcool/metabolismo , Brachypodium/enzimologia , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Brachypodium/genética , Parede Celular/metabolismo , Regulação para Baixo , Etanol/metabolismo , Perfilação da Expressão Gênica , Inativação Gênica , Genes de Plantas , Lignina/biossíntese , Metiltransferases/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Caules de Planta/química , Caules de Planta/genética , Plantas Geneticamente Modificadas/enzimologia , Alinhamento de Sequência , Sorghum/genética , Transgenes , Zea mays/genética
19.
BMC Plant Biol ; 13: 92, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799904

RESUMO

BACKGROUND: Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. RESULTS: We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. CONCLUSIONS: DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.


Assuntos
Desdiferenciação Celular , Populus/citologia , Populus/genética , Técnicas de Cultura de Células , Células Cultivadas , Citosina/metabolismo , Metilação de DNA , Epigenômica , Populus/fisiologia , Transformação Genética
20.
Genome Biol ; 24(1): 256, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936225

RESUMO

BACKGROUND: Daylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in adapting barley and wheat to northern latitudes. How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. RESULTS: We find that phytochrome C (PHYC) is essential for flowering in Brachypodium distachyon. Conversely, ELF3 acts as a floral repressor and elf3 mutants display a constitutive long day phenotype and transcriptome. We find that ELF3 and PHYC occur in a common complex. ELF3 associates with the promoters of a number of conserved regulators of flowering, including PPD1 and VRN1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in short days and is necessary for rapid flowering in response to long days. PHYC is in the active Pfr state at the end of the day, but we observe it undergoes dark reversion over the course of the night. CONCLUSIONS: We propose that PHYC acts as a molecular timer and communicates information on night-length to the circadian clock via ELF3.


Assuntos
Brachypodium , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Fotoperíodo , Flores/genética , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA