Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891894

RESUMO

Traumatic spinal cord injury (SCI) is a life-threatening and life-altering condition that results in debilitating sensorimotor and autonomic impairments. Despite significant advances in the clinical management of traumatic SCI, many patients continue to suffer due to a lack of effective therapies. The initial mechanical injury to the spinal cord results in a series of secondary molecular processes and intracellular signaling cascades in immune, vascular, glial, and neuronal cell populations, which further damage the injured spinal cord. These intracellular cascades present promising translationally relevant targets for therapeutic intervention due to their high ubiquity and conservation across eukaryotic evolution. To date, many therapeutics have shown either direct or indirect involvement of these pathways in improving recovery after SCI. However, the complex, multifaceted, and heterogeneous nature of traumatic SCI requires better elucidation of the underlying secondary intracellular signaling cascades to minimize off-target effects and maximize effectiveness. Recent advances in transcriptional and molecular neuroscience provide a closer characterization of these pathways in the injured spinal cord. This narrative review article aims to survey the MAPK, PI3K-AKT-mTOR, Rho-ROCK, NF-κB, and JAK-STAT signaling cascades, in addition to providing a comprehensive overview of the involvement and therapeutic potential of these secondary intracellular pathways following traumatic SCI.


Assuntos
Transdução de Sinais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Humanos , Animais , Serina-Treonina Quinases TOR/metabolismo
2.
Behav Brain Res ; 446: 114417, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003494

RESUMO

Globally, over 300 million surgical procedures are performed annually, with pain being one of the most common post-operative side effects. During the onset of injury, acute pain plays a protective role in alerting the individual to remove noxious stimuli, while long-lasting chronic pain without any physiological reason is detrimental to the recovery process. Hence, it created an urgent need to better understand the pain mechanism and explore therapeutic targets. Despite the hardship in performing human pain studies due to ethical considerations, clinically relevant rodent pain models provide an excellent opportunity to perform pain studies. Several neurobehavioural tests are used to assess the drug efficacy in rodents to determine avoidance behaviour latency and threshold. This review article provides a methodological overview of mechanical (i.e. von Frey, Mechanical Conflict System) and thermal (i.e. Hargreaves Assay, Hot and Cold Plate, Temperature Place Preference) tests to assess pain in clinically relevant pain rodent models. We further discussed the current modifications of those tests along with their use in literature, the impact of confounding variables, advantages and disadvantages.


Assuntos
Dor Crônica , Hiperalgesia , Ratos , Animais , Humanos , Hiperalgesia/tratamento farmacológico , Roedores , Ratos Sprague-Dawley , Medição da Dor , Temperatura Alta , Modelos Animais de Doenças , Limiar da Dor
3.
Acta Histochem ; 125(4): 152045, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37201245

RESUMO

Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to adrenergic stimulation. The KCC family is crucial for numerous physiological processes including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic homeostasis, erythrocyte swelling, dendritic spine formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes ß-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased vascular resistance, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4's high affinity for K+, it plays a vital role in cardiac ischemia with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting myogenic response in microcirculatory beds, regulation of smooth muscle tone in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and cardiac contractility as well as impairs depolarization and contractility of vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the abdominal aortic aneurysm. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.


Assuntos
Cloro , Simportadores , Humanos , Cloro/metabolismo , Cloretos/metabolismo , Microcirculação , Simportadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA