Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Methods ; 190: 44-54, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32473293

RESUMO

Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.


Assuntos
Células-Tronco Mesenquimais , Actinas/genética , Diferenciação Celular , Condrogênese , Células-Tronco Pluripotentes Induzidas , Osteogênese/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36710719

RESUMO

Fluorescence-guided surgery (FGS) is an emerging technique for tissue visualization during surgical procedures. Structures of interest are labeled with exogenous probes whose fluorescent emissions are acquired and viewed in real-time with optical imaging systems. This study investigated rare-earth-doped albumin-encapsulated nanocomposites (REANCs) as short-wave infrared emitting contrast agents for FGS. Experiments were conducted using an animal model of 4T1 breast cancer. The signal-to-background ratio (SBR) obtained with REANCs was compared to values obtained using indocyanine green (ICG), a near-infrared dye used in clinical practice. Prior to resection, the SBR for tumors following intratumoral administration of REANCs was significantly higher than for tumors injected with ICG. Following FGS, evaluation of fluorescence intensity levels in excised tumors and at the surgical bed demonstrated higher contrast between tissues at these sites with REANC contrast than ICG. REANCs also demonstrated excellent photostability over 2 hours of continuous illumination, as well as the ability to perform FGS under ambient lighting, establishing these nanocomposites as a promising contrast agent for FGS applications.

3.
BMC Cancer ; 20(1): 1082, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172421

RESUMO

BACKGROUND: The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin. The spectrally distinct emissions of the holmium (Ho), erbium (Er), and thulium (Tm) cations that constitute the cores of these nanoprobes make them attractive candidates for optical molecular imaging of multiple disease biomarkers. METHODS: SWIR-emitting rare-earth-doped albumin nanocomposites (ReANCs) were synthesized using controlled coacervation, with visible light-emitting fluorophores additionally incorporated during the crosslinking phase for validation purposes. Specifically, HoANCs, ErANCs, and TmANCs were co-labeled with rhodamine-B, FITC, and Alexa Fluor 647 dyes respectively. These Rh-HoANCs, FITC-ErANCs, and 647-TmANCs were further conjugated with the targeting ligands daidzein, AMD3100, and folic acid respectively. Binding specificities of each nanoprobe to distinct cellular subsets were established by in vitro uptake studies. Quantitative whole-body SWIR imaging of subcutaneous tumor bearing mice was used to validate the in vivo targeting ability of these nanoprobes. RESULTS: Each of the three ligand-functionalized nanoprobes showed significantly higher uptake in the targeted cell line compared to untargeted probes. Increased accumulation of tumor-specific nanoprobes was also measured relative to untargeted probes in subcutaneous tumor models of breast (4175 and MCF-7) and ovarian cancer (SKOV3). Preferential accumulation of tumor-specific nanoprobes was also observed in tumors overexpressing targeted biomarkers in mice bearing molecularly-distinct bilateral subcutaneous tumors, as evidenced by significantly higher signal intensities on SWIR imaging. CONCLUSIONS: The results from this study show that tumors can be detected in vivo using a set of targeted multispectral SWIR-emitting nanoprobes. Significantly, these nanoprobes enabled imaging of biomarkers in mice bearing bilateral tumors with distinct molecular phenotypes. The findings from this study provide a foundation for optical molecular imaging of heterogeneous tumors and for studying the response of these complex lesions to targeted therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Corantes Fluorescentes/química , Raios Infravermelhos , Nanopartículas/administração & dosagem , Imagem Óptica/métodos , Neoplasias Ovarianas/patologia , Animais , Apoptose , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Exp Cell Res ; 351(1): 11-23, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28034673

RESUMO

Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.


Assuntos
Antígenos Nucleares/metabolismo , Núcleo Celular/metabolismo , Transformação Celular Neoplásica , Células-Tronco Mesenquimais/citologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Adipócitos/citologia , Antígenos Nucleares/genética , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular , Núcleo Celular/ultraestrutura , Separação Celular/métodos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Osteócitos/citologia , Análise de Célula Única/métodos
5.
Proc Natl Acad Sci U S A ; 112(9): 2693-8, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691739

RESUMO

Atherosclerosis, the build-up of occlusive, lipid-rich plaques in arterial walls, is a focal trigger of chronic coronary, intracranial, and peripheral arterial diseases, which together account for the leading causes of death worldwide. Although the directed treatment of atherosclerotic plaques remains elusive, macrophages are a natural target for new interventions because they are recruited to lipid-rich lesions, actively internalize modified lipids, and convert to foam cells with diseased phenotypes. In this work, we present a nanomedicine platform to counteract plaque development based on two building blocks: first, at the single macrophage level, sugar-based amphiphilic macromolecules (AMs) were designed to competitively block oxidized lipid uptake via scavenger receptors on macrophages; second, for sustained lesion-level intervention, AMs were fabricated into serum-stable core/shell nanoparticles (NPs) to rapidly associate with plaques and inhibit disease progression in vivo. An AM library was designed and fabricated into NP compositions that showed high binding and down-regulation of both MSR1 and CD36 scavenger receptors, yielding minimal accumulation of oxidized lipids. When intravenously administered to a mouse model of cardiovascular disease, these AM NPs showed a pronounced increase in lesion association compared with the control nanoparticles, causing a significant reduction in neointimal hyperplasia, lipid burden, cholesterol clefts, and overall plaque occlusion. Thus, synthetic macromolecules configured as NPs are not only effectively mobilized to lipid-rich lesions but can also be deployed to counteract atheroinflammatory vascular diseases, highlighting the promise of nanomedicines for hyperlipidemic and metabolic syndromes.


Assuntos
Aterosclerose/tratamento farmacológico , Carboidratos , Macrófagos/metabolismo , Nanopartículas , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Lipídeos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Oxirredução , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo
6.
J Mater Sci Mater Med ; 29(4): 38, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29564568

RESUMO

Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with ß-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.


Assuntos
Substitutos Ósseos , Transplante Ósseo , Osso e Ossos/fisiologia , Osteoclastos/fisiologia , Animais , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Masculino , Osteoblastos , Ratos , Ratos Sprague-Dawley
7.
Nucleic Acids Res ; 42(10): 6365-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753406

RESUMO

Chromatin remodeling factors play an active role in the DNA damage response by shaping chromatin to facilitate the repair process. The spatiotemporal regulation of these factors is key to their function, yet poorly understood. We report that the structural nuclear protein NuMA accumulates at sites of DNA damage in a poly[ADP-ribose]ylation-dependent manner and functionally interacts with the ISWI ATPase SNF2h/SMARCA5, a chromatin remodeler that facilitates DNA repair. NuMA coimmunoprecipitates with SNF2h, regulates its diffusion in the nucleoplasm and controls its accumulation at DNA breaks. Consistent with NuMA enabling SNF2h function, cells with silenced NuMA exhibit reduced chromatin decompaction after DNA cleavage, lesser focal recruitment of homologous recombination repair factors, impaired DNA double-strand break repair in chromosomal (but not in episomal) contexts and increased sensitivity to DNA cross-linking agents. These findings reveal a structural basis for the orchestration of chromatin remodeling whereby a scaffold protein promotes genome maintenance by directing a remodeler to DNA breaks.


Assuntos
Adenosina Trifosfatases/metabolismo , Antígenos Nucleares/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Associadas à Matriz Nuclear/fisiologia , Reparo de DNA por Recombinação , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Histonas/metabolismo , Humanos
8.
Small ; 11(47): 6347-57, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26514367

RESUMO

Realizing the promise of precision medicine in cancer therapy depends on identifying and tracking cancerous growths to maximize treatment options and improve patient outcomes. This goal of early detection remains unfulfilled by current clinical imaging techniques that fail to detect lesions due to their small size and suborgan localization. With proper probes, optical imaging techniques can overcome this by identifying the molecular phenotype of tumors at both macroscopic and microscopic scales. In this study, the first use of nanophotonic short wave infrared technology is proposed to molecularly phenotype small lesions for more sensitive detection. Here, human serum albumin encapsulated rare-earth nanoparticles (ReANCs) with ligands for targeted lesion imaging are designed. AMD3100, an antagonist to CXCR4 (a classic marker of cancer metastasis) is adsorbed onto ReANCs to form functionalized ReANCs (fReANCs). fReANCs are able to preferentially accumulate in receptor positive lesions when injected intraperitoneally in a subcutaneous tumor model. fReANCs can also target subtissue microlesions at a maximum depth of 10.5 mm in a lung metastatic model of breast cancer. Internal lesions identified with fReANCs are 2.25 times smaller than those detected with ReANCs. Thus, an integrated nanoprobe detection platform is presented, which allows target-specific identification of subtissue cancerous lesions.


Assuntos
Raios Infravermelhos , Neoplasias Pulmonares/patologia , Nanopartículas/química , Micrometástase de Neoplasia/diagnóstico , Imagem Óptica/métodos , Ondas de Rádio , Receptores CXCR4/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Metais Terras Raras/química , Camundongos Nus , Especificidade de Órgãos
9.
J Cell Sci ; 125(Pt 2): 350-61, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331358

RESUMO

Epithelial tissue morphogenesis is accompanied by the formation of a polarity axis--a feature of tissue architecture that is initiated by the binding of integrins to the basement membrane. Polarity plays a crucial role in tissue homeostasis, preserving differentiation, cell survival and resistance to chemotherapeutic drugs among others. An important aspect in the maintenance of tissue homeostasis is genome integrity. As normal tissues frequently experience DNA double-strand breaks (DSBs), we asked how tissue architecture might participate in the DNA damage response. Using 3D culture models that mimic mammary glandular morphogenesis and tumor formation, we show that DSB repair activity is higher in basally polarized tissues, regardless of the malignant status of cells, and is controlled by hemidesmosomal integrin signaling. In the absence of glandular morphogenesis, in 2D flat monolayer cultures, basal polarity does not affect DNA repair activity but enhances H2AX phosphorylation, an early chromatin response to DNA damage. The nuclear mitotic apparatus protein 1 (NuMA), which controls breast glandular morphogenesis by acting on the organization of chromatin, displays a polarity-dependent pattern and redistributes in the cell nucleus of basally polarized cells upon the induction of DSBs. This is shown using high-content analysis of nuclear morphometric descriptors. Furthermore, silencing NuMA impairs H2AX phosphorylation--thus, tissue polarity and NuMA cooperate to maintain genome integrity.


Assuntos
Antígenos Nucleares/fisiologia , Reparo do DNA , Morfogênese , Proteínas Associadas à Matriz Nuclear/fisiologia , Células Acinares/metabolismo , Antígenos Nucleares/metabolismo , Membrana Basal/metabolismo , Mama/citologia , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Polaridade Celular , Quebras de DNA de Cadeia Dupla , Células Epiteliais , Epitélio/crescimento & desenvolvimento , Feminino , Histonas/metabolismo , Humanos , Proteínas Associadas à Matriz Nuclear/metabolismo
10.
Mol Pharm ; 11(8): 2815-24, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24972372

RESUMO

Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics.


Assuntos
Aterosclerose , Macrófagos/citologia , Nanopartículas/química , Receptores Depuradores Classe A/química , Arteriosclerose/metabolismo , Antígenos CD36/química , Regulação para Baixo , Células Espumosas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação , Leucócitos Mononucleares , Metabolismo dos Lipídeos/genética , Lipoproteínas/química , Lipoproteínas LDL/química , Macrófagos/efeitos dos fármacos , Nanotecnologia/métodos , Fenótipo , Placa Aterosclerótica
11.
Biomacromolecules ; 15(9): 3328-37, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25070717

RESUMO

Amphiphilic macromolecules (AMs) composed of sugar backbones modified with branched aliphatic chains and a poly(ethylene glycol) (PEG) tail can inhibit macrophage uptake of oxidized low-density lipoproteins (oxLDL), a major event underlying atherosclerosis development. Previous studies indicate that AM hydrophobic domains influence this bioactivity through interacting with macrophage scavenger receptors, which can contain basic and/or hydrophobic residues within their binding pockets. In this study, we compare two classes of AMs to investigate their ability to promote athero-protective potency via hydrogen-bonding or hydrophobic interactions with scavenger receptors. A series of ether-AMs, containing methoxy-terminated aliphatic arms capable of hydrogen-bonding, was synthesized. Compared to analogous AMs containing no ether moieties (alkyl-AMs), ether-AMs showed improved cytotoxicity profiles. Increasing AM hydrophobicity via incorporation of longer and/or alkyl-terminated hydrophobic chains yielded macromolecules with enhanced oxLDL uptake inhibition. These findings indicate that hydrophobic interactions and the length of AM aliphatic arms more significantly influence AM bioactivity than hydrogen-bonding.


Assuntos
Lipoproteínas LDL , Monócitos/metabolismo , Polietilenoglicóis , Receptores Depuradores , Aterosclerose , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Masculino , Monócitos/patologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Receptores Depuradores/química , Receptores Depuradores/metabolismo
12.
Transl Neurodegener ; 13(1): 2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38173014

RESUMO

BACKGROUND: Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aß) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aß (fAß) burden, microglial modulation, and neuroprotection. METHODS: We designed a nanotechnology approach to regulate the SR-mediated intracellular fAß trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aß fibrilization, fAß-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS: AM-NPs interrupted Aß fibrilization, attenuated fAß microglial internalization via targeting the fAß-specific SRs, arrested the fAß-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAß. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAß. CONCLUSIONS: The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aß aggregation and arrest the fAß-mediated pathological progression in microglia and neurons.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Neuroblastoma/metabolismo
13.
Pharmaceutics ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675210

RESUMO

Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression.

14.
FASEB J ; 26(8): 3240-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22542683

RESUMO

Substrates used to culture human embryonic stem cells (hESCs) are typically 2-dimensional (2-D) in nature, with limited ability to recapitulate in vivo-like 3-dimensional (3-D) microenvironments. We examined critical determinants of hESC self-renewal in poly-d-lysine-pretreated synthetic polymer-based substrates with variable microgeometries, including planar 2-D films, macroporous 3-D sponges, and microfibrous 3-D fiber mats. Completely synthetic 2-D substrates and 3-D macroporous scaffolds failed to retain hESCs or support self-renewal or differentiation. However, synthetic microfibrous geometries made from electrospun polymer fibers were found to promote cell adhesion, viability, proliferation, self-renewal, and directed differentiation of hESCs in the absence of any exogenous matrix proteins. Mechanistic studies of hESC adhesion within microfibrous scaffolds indicated that enhanced cell confinement in such geometries increased cell-cell contacts and altered colony organization. Moreover, the microfibrous scaffolds also induced hESCs to deposit and organize extracellular matrix proteins like laminin such that the distribution of laminin was more closely associated with the cells than the Matrigel treatment, where the laminin remained associated with the coated fibers. The production of and binding to laminin was critical for formation of viable hESC colonies on synthetic fibrous scaffolds. Thus, synthetic substrates with specific 3-D microgeometries can support hESC colony formation, self-renewal, and directed differentiation to multiple lineages while obviating the stringent needs for complex, exogenous matrices. Similar scaffolds could serve as tools for developmental biology studies in 3-D and for stem cell differentiation in situ and transplantation using defined humanized conditions.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Alicerces Teciduais , Biopolímeros , Adesão Celular , Diferenciação Celular , Proliferação de Células , Colágeno , Combinação de Medicamentos , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Laminina/biossíntese , Polilisina/farmacologia , Proteoglicanas , Estereoisomerismo , Tirosina/análogos & derivados
15.
Biomacromolecules ; 14(8): 2463-9, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23795777

RESUMO

Amphiphilic macromolecules (AMs) based on carbohydrate domains functionalized with poly(ethylene glycol) can inhibit the uptake of oxidized low density lipoprotein (oxLDL) and counteract foam cell formation, a key characteristic of early atherogenesis. To investigate the influence of lipophilicity and stereochemistry on the AMs' physicochemical and biological properties, mucic acid-based AMs bearing four aliphatic chains (2a) and tartaric acid-based AMs bearing two (2b and 2l) and four aliphatic chains (2g and 2k) were synthesized and evaluated. Solution aggregation studies suggested that both the number of hydrophobic arms and the length of the hydrophobic domain impact AM micelle sizes, whereas stereochemistry impacts micelle stability. 2l, the meso analogue of 2b, elicited the highest reported oxLDL uptake inhibition values (89%), highlighting the crucial effect of stereochemistry on biological properties. This study suggests that stereochemistry plays a critical role in modulating oxLDL uptake and must be considered when designing biomaterials for potential cardiovascular therapies.


Assuntos
Lipoproteínas LDL/metabolismo , Açúcares Ácidos/farmacologia , Tensoativos/farmacologia , Tartaratos/farmacologia , Aterosclerose/tratamento farmacológico , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipoproteínas LDL/antagonistas & inibidores , Micelas , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacologia , Estereoisomerismo , Açúcares Ácidos/síntese química , Tensoativos/síntese química , Tartaratos/síntese química
16.
Biomacromolecules ; 14(8): 2499-509, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23738575

RESUMO

Atherosclerosis is a condition resulting from the accumulation of oxidized low-density lipoproteins (oxLDLs) in arterial walls. Previously developed macromolecules consisting of alkyl chains and polyethylene glycol (PEG) on a mucic acid backbone, termed nanolipoblockers (NLBs) are hypothesized to mitigate the uptake of oxLDL by macrophage scavenger receptors. In this work, we developed a coarse grained model to characterize the interactions between NLBs with a segment of human scavenger receptor A (SR-A), a key receptor domain that regulates cholesterol uptake and foam cell conversion of macrophages, and studied NLB ability to block oxLDL uptake in PBMC macrophages. We focused on four different NLB configurations with variable molecular charge, charge location, and degree of NLB micellization. Kinetic studies showed that three of the four NLBs form micelles within 300 ns and of sizes comparable to literature results. In the presence of SR-A, micelle-forming NLBs interacted with the receptor primarily in an aggregated state rather than as single unimers. The model showed that incorporation of an anionic charge near the NLB mucic acid head resulted in enhanced interaction with the proposed binding pocket of SR-A compared to uncharged NLBs. By contrast, NLBs with an anionic charge located at the PEG tail showed no interaction increase as NLB aggregates were predominately observed to interact away from the oxLDL binding site. Additionally, using two different methods to assess the number of contacts that each NLB type formed with SR-A, we found that the rank order of contacts coincided with our experimental flow cytometry results evaluating the ability of the different NLBs to block the uptake of oxLDL.


Assuntos
Antimetabólitos/farmacologia , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Polietilenoglicóis/farmacologia , Receptores Depuradores Classe A/química , Antimetabólitos/síntese química , Sítios de Ligação , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipoproteínas LDL/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Micelas , Conformação Molecular , Polietilenoglicóis/síntese química , Ligação Proteica , Receptores Depuradores Classe A/metabolismo , Açúcares Ácidos/síntese química , Açúcares Ácidos/farmacologia
17.
Proc Natl Acad Sci U S A ; 107(2): 610-5, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080726

RESUMO

Stem cells that adopt distinct lineages cannot be distinguished based on traditional cell shape. This study reports that higher-order variations in cell shape and cytoskeletal organization that occur within hours of stimulation forecast the lineage commitment fates of human mesenchymal stem cells (hMSCs). The unique approach captures numerous early (24 h), quantitative features of actin fluororeporter shapes, intensities, textures, and spatial distributions (collectively termed morphometric descriptors). The large number of descriptors are reduced into "combinations" through which distinct subpopulations of cells featuring unique combinations are identified. We demonstrate that hMSCs cultured on fibronectin-treated glass substrates under environments permissive to bone lineage induction could be readily discerned within the first 24 h from those cultured in basal- or fat-inductive conditions by such cytoskeletal feature groupings. We extend the utility of this approach to forecast osteogenic stem cell lineage fates across a series of synthetic polymeric materials of diverse physicochemical properties. Within the first 24 h following stem cell seeding, we could successfully "profile" the substrate responsiveness prospectively in terms of the degree of bone versus nonbone predisposition. The morphometric methodology also provided insights into how substrates may modulate the pace of osteogenic lineage specification. Cells on glass substrates deficient in fibronectin showed a similar divergence of lineage fates, but delayed beyond 48 h. In summary, this high-content imaging and single cell modeling approach offers a framework to elucidate and manipulate determinants of stem cell behaviors, as well as to screen stem cell lineage modulating materials and environments.


Assuntos
Diferenciação Celular/fisiologia , Citoesqueleto/ultraestrutura , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Adipócitos/fisiologia , Adulto , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Meios de Cultura , Citoesqueleto/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Engenharia Tecidual/métodos
18.
Polym Degrad Stab ; 97(9): 1686-1689, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162175

RESUMO

An amphiphilic macromolecule (AM) was exposed to ionizing radiation (both electron beam and gamma) at doses of 25 kGy and 50 kGy to study the impact of these sterilization methods on the physicochemical properties and bioactivity of the AM. Proton nuclear magnetic resonance and gel permeation chromatography were used to determine the chemical structure and molecular weight, respectively. Size and zeta potential of the micelles formed from AMs in aqueous media were evaluated by dynamic light scattering. Bioactivity of irradiated AMs was evaluated by measuring inhibition of oxidized low-density lipoprotein uptake in macrophages. From these studies, no significant changes in the physicochemical properties or bioactivity were observed after the irradiation, demonstrating that the AMs can withstand typical radiation doses used to sterilize materials.

19.
Adv Nanobiomed Res ; 2(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36051821

RESUMO

Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1ß, and upregulating the expression of the anti-inflammatory genes TGF-ß and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.

20.
Small ; 7(2): 242-51, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21213389

RESUMO

Traditional tissue regeneration approaches to activate cell behaviors on biomaterials rely on the use of extracellular-matrix-based or soluble growth-factor cues. In this article, a novel approach is highlighted to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin-derived nanocarriers (ANCs) with variable nanoscale-size features are functionalized with fibronectin III9-10 matrix ligands, and their effects on primary human keratinocyte activation are investigated. The presentation of fibronectin fragments from ANCs significantly enhances cell migration as compared to free ligands at equivalent concentrations. Notably, cell migration is influenced by the size of the underlying ANCs even for variably sized ANCs covered in comparable levels of fibronectin fragment. For equivalent ligand concentrations, cell migration on the smaller-sized ANCs (30 and 50 nm) is significantly enhanced as compared to that on larger-sized ANCs (75 and 100 nm). In contrast, the enhancement of cell migration on nanocarriers is abolished by the use of immobilized, biofunctionalized ANCs, indicating that "dynamic" nanocarrier internalization events underlie the role of nanocarrier geometry on the differential regulation of cell migration kinetics. Uptake studies using fluorescent ANCs indicate that larger-sized ANCs cause delayed endocytic kinetics and hence could present barriers for internalization during the cell adhesion and motility processes. Motile cells exhibit diminished migration upon exposure to clathrin inhibitors, but not caveolin inhibitors, suggesting the role of clathrin-mediated endocytosis in facilitating cell migratory responsiveness to the nanocarriers. Overall, a monotonic relationship is found between the nanocarrier cytointernalization rate and the cell migration rate, suggesting the possibility of designing biointerfacial features for the dynamic control of cell migration. Thus, the functionalization of a mobile nanocarrier by a biorelevant ligand can be used to sensitize cellular motility activation to the adhesion ligands, and such nanocarrier interfaces can dynamically attune cell migration kinetics by modulating the uptake of the ligand-nanocarrier complex via nanocarrier size.


Assuntos
Nanoestruturas/química , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Fibronectinas/química , Fibronectinas/farmacologia , Humanos , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA