Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590236

RESUMO

Microglial cells (MGCs) serve as the resident macrophages in the brain and spinal cord, acting as the first line of immune defense against pathological changes. With various phenotypes, they can shift from a homeostatic state to a reactive state or transit from a reactive to a non-inflammatory reactive state (alternative homeostatic). A well-timed transit is crucial in limiting excessive microglial reaction and promoting the healing process. Studies indicate that increased Nurr1 expression promotes anti-neuroinflammatory responses in the brain. In this study, we investigated the possible role of ferulic acid (FA) in facilitating microglia transition due to its anti-inflammatory and Nurr1-inducing effects. MGCs were extracted from the brains of male NMRI mice at postnatal day 2 (P2) and cultured with or without FA and beta-amyloid (Aß). Real-time qRT-PCR was conducted to measure the expressions of Nurr1, IL-1ß, and IL-10 genes. Immunostaining was performed to determine the number of NURR1-positive cells, and the ramification index (RI) of MGCs was calculated using Image J software. Treating MGCs with FA (50 µg/ml) induced Nurr1 and IL-10 expressions, while reducing the level of IL-1ß in the absence of Aß-stress. Further assessments on cells under Aß-stress showed that FA treatment restored the IL-10 and Nurr1 levels, increased the RI of cells, and the number of NURR1-positive cells. Morphological assessments and measurements of the RI revealed that FA treatment reversed amoeboid and rod-like cells to a ramified state, which is specific morphology for non-inflammatory reactive microglia. To conclude, FA can provide potential alternative homeostatic transition in Aß-reactive microglia by recruiting the NURR1 dependent anti-inflammatory responses. This makes it a promising therapeutic candidate for suppressing Aß-induced neuroinflammatory responses in MGCs. Furthermore, given that FA has the ability to increase NURR1 levels in homeostatic microglia, it could be utilized as a preventative medication.


Assuntos
Microglia , Doenças Neuroinflamatórias , Masculino , Animais , Camundongos , Peptídeos beta-Amiloides , Interleucina-10 , Inflamação/tratamento farmacológico
2.
Cell J ; 23(2): 164-173, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34096217

RESUMO

OBJECTIVE: Alpha-lipoic acid (ALA) as a strong antioxidant has a protective effect. This study was designed to assess whether supplementation of maturation medium with ALA during in vitro maturation (IVM) can attenuate the toxic effect of ethanol. MATERIALS AND METHODS: In this experimental study, to assess the antioxidant capacity of ALA challenged by 1% ethanol during in vitro maturation, immature ovine oocytes were exposed to 1% alcohol in the presence or absence of 25 µM ALA during oocyte maturation. The cumulus expansion index, intracellular reactive oxygen species (ROS), and thiol content levels were assessed in matured oocytes of various treatment groups. Consequently, the blastocyst formation rate of matured oocytes in various treatment groups were assessed. In addition, total cell number (TCN), cell allocation, DNA fragmentation, and relative gene expression of interested genes were assessed in resultant blastocysts. RESULTS: The results revealed that alcohol significantly reduced cumulus cells (CCs) expansion index and blastocyst yield and rate of apoptosis in resultant embryos. Addition of 25 µM ALA to 1% ethanol during oocyte maturation decreased ROS level and elevated Thiolcontent. Furthermore, supplementation of maturation medium with ALA attenuated the effect of 1% ethanol and significantly increased the blastocyst formation and hatching rate as compared to control and ethanol groups. In addition, the quality of blastocysts produced in ALA+ethanol was improved based on the low number of TUNEL positive cells, the increased expression level of mRNA for pluripotency, and anti-oxidant markers, and decreased expression of apoptotic genes. CONCLUSION: The current findings demonstrate that ALA can diminish the effect of ethanol, possibly by decreasing the ROS level and increasing Thiolcontent during oocyte maturation. Using the ALA supplement may have implications in protecting oocytes from alcohol toxicity in affected patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA