Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047187

RESUMO

Type 2 diabetes mellitus (T2DM) represents an important microvascular disease concerning the kidney and the brain. Gut dysbiosis and microbiota-derived metabolites may be in relation with early pathophysiological changes in diabetic kidney disease (DKD). The aim of the study was to find new potential gut-derived biomarkers involved in the pathogenesis of early DKD, with a focus on the complex interconnection of these biomarkers with podocyte injury, proximal tubule dysfunction, renal and cerebrovascular endothelial dysfunction. The study design consisted of metabolite profiling of serum and urine of 90 T2DM patients (subgroups P1-normoalbuminuria, P2-microalbuminuria, P3-macroalbuminuria) and 20 healthy controls (group C), based on ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry analysis (UHPLC-QTOF-ESI+-MS). By multivariate and univariate analyses of serum and urine, which included Partial Least Squares Discriminant Analysis (PLSDA), Variable Importance Plots (VIP), Random Forest scores, One Way ANOVA and Biomarker analysis, there were discovered metabolites belonging to nitrogen metabolic pathway and retinoic acid signaling pathway which differentiate P1 group from P2, P3, C groups. Tyrosine, phenylalanine, indoxyl sulfate, serotonin sulfate, and all-trans retinoic acid express the metabolic fingerprint of P1 group vs. P2, P3, C groups, revealing a particular pattern in early DKD in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Albuminúria/metabolismo , Biomarcadores
2.
J Clin Med ; 13(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39200845

RESUMO

Background: Over the years, it was noticed that patients with diabetes have reached an alarming number worldwide. Diabetes presents many complications, including diabetic kidney disease (DKD), which can be considered the leading cause of end-stage renal disease. Current biomarkers such as serum creatinine and albuminuria have limitations for early detection of DKD. Methods: In our study, we used UHPLC-QTOF-ESI+-MS techniques to quantify previously analyzed metabolites. Based on one-way ANOVA and Fisher's LSD, untargeted analysis allowed the discrimination of six metabolites between subgroups P1 versus P2 and P3: tryptophan, kynurenic acid, taurine, l-acetylcarnitine, glycine, and tiglylglycine. Results: Our results showed several metabolites that exhibited significant differences among the patient groups and can be considered putative biomarkers in early DKD, including glycine and kynurenic acid in serum (p < 0.001) and tryptophan and tiglylglycine (p < 0.001) in urine. Conclusions: Although we identified metabolites as potential biomarkers in the present study, additional studies are needed to validate these results.

3.
Biomolecules ; 13(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509122

RESUMO

Diabetic kidney disease (DKD) is one of the most debilitating complications of type 2 diabetes mellitus (T2DM), as it progresses silently to end-stage renal disease (ESRD). The discovery of novel biomarkers of early DKD becomes acute, as its incidence is reaching catastrophic proportions. Our study aimed to quantify previously identified metabolites from serum and urine through untargeted ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-ESI+-MS) techniques, such as the following: arginine, dimethylarginine, hippuric acid, indoxyl sulfate, p-cresyl sulfate, L-acetylcarnitine, butenoylcarnitine and sorbitol. The study concept was based on the targeted analysis of selected metabolites, using the serum and urine of 20 healthy subjects and 90 T2DM patients with DKD in different stages (normoalbuminuria-uACR < 30 mg/g; microalbuminuria-uACR 30-300 mg/g; macroalbuminuria-uACR > 300 mg/g). The quantitative evaluation of metabolites was performed with pure standards, followed by the validation methods such as the limit of detection (LOD) and the limit of quantification (LOQ). The following metabolites from this study resulted as possible biomarkers of early DKD: in serum-arginine, dimethylarginine, hippuric acid, indoxyl sulfate, butenoylcarnitine and sorbitol and in urine-p-cresyl sulfate.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Microbioma Gastrointestinal , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Indicã , Metabolômica/métodos , Biomarcadores , Arginina , Sulfatos
4.
Biomedicines ; 11(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371622

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease; however, few biomarkers of its early identification are available. The aim of the study was to assess new biomarkers in the early stages of DKD in type 2 diabetes mellitus (DM) patients. This cross-sectional pilot study performed an integrated metabolomic profiling of blood and urine in 90 patients with type 2 DM, classified into three subgroups according to albuminuria stage from P1 to P3 (30 normo-, 30 micro-, and 30 macroalbuminuric) and 20 healthy controls using high-performance liquid chromatography and mass spectrometry (UPLC-QTOF-ESI* MS). From a large cohort of separated and identified molecules, 33 and 39 amino acids and derivatives from serum and urine, respectively, were selected for statistical analysis using Metaboanalyst 5.0. online software. The multivariate and univariate algorithms confirmed the relevance of some amino acids and derivatives as biomarkers that are responsible for the discrimination between healthy controls and DKD patients. Serum molecules such as tiglylglycine, methoxytryptophan, serotonin sulfate, 5-hydroxy lysine, taurine, kynurenic acid, and tyrosine were found to be more significant in the discrimination between group C and subgroups P1-P2-P3. In urine, o-phosphothreonine, aspartic acid, 5-hydroxy lysine, uric acid, methoxytryptophan, were among the most relevant metabolites in the discrimination between group C and DKD group, as well between subgroups P1-P2-P3. The identification of these potential biomarkers may indicate their involvement in the early DKD and 2DM progression, reflecting kidney injury at specific sites along the nephron, even in the early stages of DKD.

5.
Metabolites ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623837

RESUMO

Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA