Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(3): e202301890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38252073

RESUMO

In this investigation, the study focused on the chemical constitution and the antioxidative as well as anti-inflammatory characteristics of oils and pulpy variants (Imatchan (IM), Harmocha (HA), and Aknari (AK)) sourced from O. dillenii. This inquiry encompassed both in vitro and in silico analyses. High-performance liquid chromatography (HPLC) was employed to ascertain the phenolic constituents, while gas chromatography-mass spectrometry (GC-MS) methodologies. were applied to discern the volatile makeup. The appraisal of antioxidant potential was conducted via the deployment of assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and ferric ion chelating (FIC) techniques. The anti-inflammatory activity was examined using BSA and LOX. Molecular docking methods assessed the antioxidant and anti-inflammatory properties. According to HPLC findings, the most abundant compounds detected in AKO and IMO cultivars were quercetin 3-O-ß-D-glucoside followed by vanillic acid, ferulic acid and tyrolsol. Concerning headspace GC-MS analysis E-11-hexadecenal and (E)-2-undecenal contribute to the major compounds detected in Opuntia HA, IM, and AK pulp and oil. The DPPH IC50 for AK, HA and IM were 38.41±1.54, 42.24±0.29 and 15.17±1.28 mg/mL, respectively. The FRAP IC50 capacity of AK, HA and IM was determined to be 30.23±0.6, 55.96±0.08 and 23.41±1.83 mg/mL, respectively. AK, HA and IM displayed significant FIC activity, with IC50 values of 42.75±0.63, 39.54±0.59 and 35.31±1.38 mg/mL, respectively. The AK, HA and IM O. dillenii oils were effective in their anti-inflammatory activity. Molecular docking of O. dillenii oils phenolic compounds was conducted to determine the possible targeted proteins by the phenolic compounds in O. dillenii's compounds. Overall, these fruits demonstrated the potential for new ingredients for culinary or pharmaceutical applications, providing value to these natural species that can flourish in arid conditions.


Assuntos
Antioxidantes , Opuntia , Antioxidantes/farmacologia , Antioxidantes/química , Opuntia/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Fenóis/farmacologia , Óleos
2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931453

RESUMO

Crataegus monogyna (C. monogyna) is a prominent plant used in Moroccan traditional medicine. This study investigated the phenolic composition and the anti-inflammatory, the hepatoprotective, and the anticancer activities of a hydroethanolic extract of C. monogyna leaves and stems. Ultra-high-performance liquid chromatography identified the phenolic profile. The in vitro anticancer activity was evaluated using the MTT assay on HL-60 and K-562 myeloleukemia cells and liver (Huh-7) cell lines. The anti-inflammatory effect was assessed in vivo using carrageenan-induced paw edema in rats. The hepatoprotective effect at 300 and 1000 mg/kg doses against the acetaminophen-induced hepatotoxicity on rats was studied for seven days. Additionally, molecular docking simulations were performed to evaluate the extract's inhibitory potential against key targets: lipoxygenase, cytochrome P450, tyrosine kinase, and TRADD. The extract exhibited significant cytotoxic activity against K-562 and HL-60 cells, but not against lung cancer cells (Huh-7 line). The 1000 mg/kg dose demonstrated the most potent anti-inflammatory effect, inhibiting edema by 99.10% after 6 h. C. monogyna extract displayed promising hepatoprotective properties. Procyanidin (-7.27 kcal/mol), quercetin (-8.102 kcal/mol), and catechin (-9.037 kcal/mol) were identified as the most active molecules against lipoxygenase, cytochrome P450, and tyrosine kinase, respectively. These findings highlight the untapped potential of C. monogyna for further exploration in treating liver damage, inflammation, and leukemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA