Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Lab ; 67(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33865266

RESUMO

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) is the cause of the third pneumonia-like outbreak of coronaviruses in humans during the 21st century. The status of the host immune system is a critical factor that affects the severity and outcomes of COVID-19. In particular, antibody responses are an indicator of the anti-viral defense; so, a delayed or inappropriate induction of these responses would correlate with a defect in the viral clearance. METHODS: This is a rapid synthesis of literature investigating antibody responses in patients with the severe acute respiratory syndrome (SARS) and COVID-19. RESULTS: Lessons learned from severe acute respiratory syndrome (SARS), along with the direct evidence of antibody responses in COVID-19, pose the potentials of dynamic antibody responses for screening and prognostic purposes in COVID-19. Also, neutralizing antibodies extracted from recovered patients and monoclonal antibodies targeting cytokines offer therapeutic support for COVID-19. CONCLUSIONS: Altogether, the dynamics of antibody responses help to determine the effectiveness of treatments for COVID-19. Of note, it might be helpful for the evaluation of the efficacy of immunotherapy and vaccination - the dreams for the future of COVID-19. Further studies are necessary to investigate the possibility and efficacy of antibody extraction from animal subjects. Finally, numerous factors affect antibody response such as race, nutrition status, and virus mutations in viral infections, which need to be considered in the context of COVID-19.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Biomarcadores/sangue , COVID-19/sangue , Humanos , Síndrome Respiratória Aguda Grave/diagnóstico , Síndrome Respiratória Aguda Grave/virologia
2.
Mycoses ; 64(11): 1378-1386, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33864711

RESUMO

BACKGROUND: Species from the Trichophyton benhamiae complex are mostly zoophilic dermatophytes which cause inflammatory dermatophytosis in animals and humans worldwide. OBJECTIVES: This study was purposed to (a) to identify 169 reference and clinical dermatophyte strains from the T benhamiae complex species by molecular method and adhering to the newest taxonomy in the complex (b) to evaluate the in vitro antifungal susceptibility profile of these strains against eight common and new antifungal agents that may be used for the treatment of dermatophytosis. METHODS: All isolates, mainly originated from Europe but also from Iran, Japan and USA, were subjected to ITS-rDNA sequencing. The in vitro antifungal susceptibility profiles of eight common and new antifungal drugs against the isolates were determined by CLSI M38-A2 protocol and according to microdilution method. RESULTS: Based on the ITS-rDNA sequencing, T benhamiae was the dominant species (n = 102), followed by T europaeum (n = 29), T erinacei (n = 23), T japonicum (n = 10), Trichophyton sp (n = 4) and T eriotrephon (n = 1). MIC ranges across all isolates were as follows: luliconazole: 0.0002-0.002 µg/ml, terbinafine: 0.008-0.125 µg/ml, efinaconazole: 0.008-0.125 µg/ml, ciclopirox olamine: 0.03-0.5 µg/ml, itraconazole: 0.06-2 µg/ml, griseofulvin: 0.25-4 µg/ml, amorolfine hydrochloride: 0.125-4 µg/ml and tavaborole: 1-16 µg/ml. CONCLUSION: Luliconazole, efinaconazole and terbinafine were the most potent antifungals against T benhamiae complex isolates, regardless of the geographic locations where strains were isolated. These data might help dermatologists to develop effective therapies for successful treatment of infections due to T benhamiae complex species.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Tinha/microbiologia , Zoonoses/microbiologia , Animais , Antifúngicos/uso terapêutico , Arthrodermataceae/classificação , Arthrodermataceae/genética , Arthrodermataceae/isolamento & purificação , Europa (Continente) , Humanos , Irã (Geográfico) , Japão , Tinha/tratamento farmacológico , Estados Unidos , Zoonoses/tratamento farmacológico
3.
Mycoses ; 64(4): 385-393, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33295089

RESUMO

Dermatophytosis is a common superficial mycotic infection affecting individual's quality of life worldwide. The present study aimed to perform species-level identification and evaluate the antifungal susceptibility patterns of dermatophytes isolated in Shiraz, Iran. This cross-sectional study was conducted on clinical samples collected during 2017-2019 from 307 patients suspected of having dermatophytosis. The isolates were identified by direct microscopy, culture and internal transcribed spacer ribosomal DNA sequencing, and their antifungal susceptibility patterns were determined by the microdilution method. Among 307 patients, dermatophytosis was diagnosed by microscopy in 190 (61.8%) subjects and confirmed in 130 (42.3%) cases by both microscopy and culture. It was found out tinea pedis was the most common clinical manifestation, and Trichophyton mentagrophytes was the most prevalent species (28.4%), followed by T tonsurans (23.8%), Microsporum canis (11.5%), T interdigitale (10%), T verrucosum (6.9%), T rubrum (6.9%), T benhamiae (4.6%), T violaceum (3%), T simii (3%), Epidermophyton floccosum (0.7%) and M ferrugineum (0.7%). Moreover, it was revealed that luliconazole with a geometric mean (GM) minimum inhibitory concentration (MIC) of 0.03 µg ml-1 was the most effective agent against all tested isolates. Regardless of species, 30% of isolates responded to high MICs of griseofulvin (MIC90  > 2 µg ml-1 ). The increasing prevalence of nonindigenous species of T simii, T benhamiae and M ferrugineum in Shiraz, Iran, was a notable finding. In addition, infections due to zoophilic species showed an increasing trend. These epidemiological data, along with antifungal susceptibility patterns, may have implications for clinical decision-making and successful treatment.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Dermatomicoses/microbiologia , Adolescente , Adulto , Antifúngicos/uso terapêutico , Arthrodermataceae/classificação , Arthrodermataceae/isolamento & purificação , Criança , Pré-Escolar , Estudos Transversais , DNA Espaçador Ribossômico/genética , Dermatomicoses/tratamento farmacológico , Dermatomicoses/epidemiologia , Feminino , Humanos , Lactente , Irã (Geográfico)/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Qualidade de Vida , Adulto Jovem
4.
Mol Neurobiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057641

RESUMO

Inflammation during pregnancy may occur due to various factors. This condition, in which maternal immune system activation occurs, can affect fetal brain development and be related to neurodevelopmental diseases. MIA interacts with the fetus's brain development through maternal antibodies, cytokines, chemokines, and microglial cells. Antibodies are associated with the development of the nervous system by two mechanisms: direct binding to brain inflammatory factors and binding to brain antigens. Cytokines and chemokines have an active presence in inflammatory processes. Additionally, glial cells, defenders of the nervous system, play an essential role in synaptic modulation and neurogenesis. Maternal infections during pregnancy are the most critical factors related to MIA; however, several studies show the relation between these infections and neurodevelopmental diseases. Infection with specific viruses, such as Zika, cytomegalovirus, influenza A, and SARS-CoV-2, has revealed effects on neurodevelopment and the onset of diseases such as schizophrenia and autism. We review the relationship between maternal infections during pregnancy and their impact on neurodevelopmental processes.

5.
Int J Dermatol ; 62(1): 120-127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35780324

RESUMO

BACKGROUND: The ability of dermatophytes to develop biofilm, as one of the virulence factors in fungal infections which contribute to antifungal resistance, is an outstanding aspect of dermatophytosis that has been noted recently. Because of the paucity of data about the biofilm formation by dermatophytes and their susceptibility to antifungal drugs, this study evaluated the biofilm formation by clinical isolates of dermatophytes and antibiofilm activity of common antifungals widely used to manage dermatophytosis. METHODS: The ribosomal DNA internal transcribed spacer (ITS) regions sequencing for species identification of 50 clinical dermatophyte isolates was performed. The ability of isolates to form biofilm and inhibitory activity of itraconazole, terbinafine, and griseofulvin against biofilm formation was assayed by the crystal violet staining method. Optical microscopy and scanning electron microscopy (SEM) were applied for the visualization of the biofilm structures. RESULTS: Trichophyton (T.) mentagrophytes (n: 14; 28%) and T. rubrum (n: 13;26%) were included in more than half of the dermatophyte isolates. Biofilm formation was observed in 37 out of 50 (74%) isolates that were classified as follows: nonproducers (n: 13; 26%), weak producers (n: 4; 8%), moderate producers (n: 16; 32%), and strong producers (n: 17; 34%) by comparison of the absorbance of biofilms produced by clinical strains with control. The mean IC50 values for terbinafine, griseofulvin, and itraconazole were 2.42, 3.18, and 3.78 µg/ml, respectively. CONCLUSIONS: The results demonstrated that most of the clinical dermatophyte isolates are capable to form biofilm in vitro with variable strength. Moreover, terbinafine can be suggested as the first-line choice for the treatment of biofilm-formed dermatophytosis.


Assuntos
Arthrodermataceae , Tinha , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Itraconazol/uso terapêutico , Griseofulvina/uso terapêutico , Testes de Sensibilidade Microbiana , Trichophyton , Biofilmes , Tinha/microbiologia
6.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1019-1027, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657423

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected the world's health systems for more than two years. This disease causes a high mortality rate followed by cytokine storm-induced oxidative stress and acute respiratory distress syndrome (ARDS). Therefore, many drugs have been considered with emphasis on their anti-inflammatory and antioxidant effects in controlling the consequences of SARS-CoV-2 infection. Icariin is a major bioactive pharmaceutical compound derived from Epimedium plants, which is known due to its anti-inflammatory and antioxidant effects. Additionally, the protective effects of icariin have been studied in different pathologies through modulating intracellular pathways. In addition to the potential effect of this compound on inflammation and oxidative stress caused by SARS-CoV-2 infection, it appears to interfere with intracellular pathways involved in viral entry into the cell. Therefore, this paper aims to review the molecular mechanisms of anti-inflammatory and antioxidant properties of icariin, and hypothesizes its potential to inhibit SARS-CoV-2 entry into host cells through modulating the intracellular pathways.


Assuntos
COVID-19 , Epimedium , Anti-Inflamatórios , Antioxidantes , Citocinas , Flavonoides , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA