Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fluoresc ; 34(1): 149-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37178421

RESUMO

In this study, a simple Schiff base sensor 1-(((4-nitrophenyl)imino)methyl)naphthalen-2-ol(NNM) has been used for chemosensing of metal ions. The metal sensing properties of sensor NNM have been investigated using UV-visible and fluorescence spectroscopic approaches. The spectral investigations revealed a red shift in absorption spectra and quenching in the emission band of the ligand molecule in the presence of Cu2+ and Ni2+ ions. The binding stoichiometry of sensor NNM for the analyte (Cu2+ and Ni2+ ions) has been investigated by the Job's plot analysis and found to be 1:1 (NNM:Analyte). The data of the Benesi-Hildebrand plot demonstrated that NNM detected Cu2+ and Ni2+ ions in nanomolar quantity. The binding insights among NNM and analytes (Cu2+ and Ni2+ ions) have been confirmed by shifted IR signals. Moreover, the reusabilty of the sensor has been investigated using an EDTA solution. In addition, the sensor NNM also successfully applied to real water samples for the identification and measurement of Cu2+ and Ni2+ ions. Hence, this system could be highly applicable in environmental and biological applications.

2.
J Fluoresc ; 34(2): 479-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37382834

RESUMO

The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Eletroquímicas , Nanoestruturas/química , Técnicas Biossensoriais/métodos
3.
J Fluoresc ; 34(1): 139-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37310589

RESUMO

Bacterial contamination of water sources is a significant public health concern, and therefore, it is important to have accurate and efficient methods for monitoring bacterial concentration in water samples. Fluorescence-based methods, such as SYTO 9 and PI staining, have emerged as a promising approach for real-time bacterial quantification. In this review, we discuss the advantages of fluorescence-based methods over other bacterial quantification methods, including the plate count method and the most probable number (MPN) method. We also examine the utility of fluorescence arrays and linear regression models in improving the accuracy and reliability of fluorescence-based methods. Overall, fluorescence-based methods offer a faster, more sensitive, and more specific option for real-time bacterial quantification in water samples.


Assuntos
Bactérias , Água , Reprodutibilidade dos Testes , Coloração e Rotulagem
4.
Arch Pharm (Weinheim) ; 357(8): e2400157, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38713910

RESUMO

Two novel series of hydrazinyl-based benzenesulfonamides 9a-j and 10a-j were designed and synthesized using SLC-0111 as the lead molecule. The newly synthesized compounds were evaluated for their inhibitory activity against four different human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. Both the series reported here were practically inactive against the off-target isozyme hCA I. Notably, derivative 10a exhibited superior potency (Ki of 10.2 nM) than acetazolamide (AAZ) against the cytosolic isoform hCA II. The hCA IX and XII isoforms implicated in tumor progression were effectively inhibited with Kis in the low nanomolar range of 20.5-176.6 nM and 6.0-127.5 nM, respectively. Compound 9g emerged as the most potent and selective hCA IX and XII inhibitor with Ki of 20.5 nM and SI of 200.1, and Ki of 6.0 nM and SI of 683.7, respectively, over hCA I. Furthermore, six compounds (9a, 9h, 10a, 10g, 10i, and 10j) exhibited significant inhibition toward hCA IX (Kis = 27.0, 41.1, 27.4, 25.9, 40.7, and 30.8 nM) relative to AAZ and SLC-0111 (Kis = 25.0 and 45.0 nM, respectively). These findings underscore the potential of these derivatives as potent and selective inhibitors of hCA IX and XII over the off-target hCA I and II.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Sulfonamidas , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Estrutura Molecular , Desenho de Fármacos , Antígenos de Neoplasias/metabolismo , Isoenzimas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Anidrase Carbônica IX/antagonistas & inibidores , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica II/antagonistas & inibidores , Anidrase Carbônica II/metabolismo , Simulação por Computador , Simulação de Acoplamento Molecular , Compostos de Fenilureia
5.
J Fluoresc ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665509

RESUMO

For the determination of tin(II) traces, an extractive spectrophotometric approach is devised. The applied method serves a powerful tool for determination of tin(II), involves the formation of yellow colored complex after the binding of 6-bromo-3-hydroxy-2-(5-methylfuran-2-yl)-4H-chromen-4-one (BHMF) and tin(II) in 1:2 stiochiometry in a slightly acidic medium (HCl). The complex shows absorbance at 434 nm with respect of the blank reagent. The outcomes of spectral investigation for complexation showed a Beer's range of 0-1.3 µg Sn mL-1, molar absorptivity, specific absorptivity and Sandell's complex sensitivity are 9.291 × 104 L mol-1 cm-1, 0.490 mL g-1 cm-1 and 0.002040 µg cm-2 at 434 nm that was stable for two days. The interferences study results showed that this method is free from interferences, when tested with metal ions including Ag, Be, Bi, Ca, Cd, Ce, Co, Hg, Mo, Re, Pt, Se,Ti, U, V, W and other common cations, anions, and complexing agents. The applied method is quite simple, highly selective, and sensitive with good re-producibility. This method has been satisfactorily by utilizing the proposed procedure, and its applicability has been tested by analyzing synthetic samples and an alloy sample of gunmetal. The procedure assumes this because of the scarcity of better methods for determining tin(II). The results are in good agreement with the certified value.

6.
Inorg Chem ; 61(37): 14778-14786, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36069102

RESUMO

A highly symmetric bis-triazole-pyridine-based organic ligand, i.e., 3,5-di(4H-1,2,4-triazol-4-yl)pyridine (L), and Cu(II) salts were used to synthesize three cationic Cu(I) metal-organic frameworks (MOFs), namely, {[Cu(L)]·(NO3)·(H2O)}n (1), {[Cu(L)]·(BF4)·0.5H2O}n (2), and {[Cu1.25(L)]·1.25(ClO4)·H2O}n (3). All three MOFs have nonbonded anions situated inside the pore spaces. Both 1 and 2 have a two-dimensional network structure, while 3 has a three-dimensional structure. All three MOFs were characterized using Fourier transform infrared spectroscopy, elemental (C, H, and N) analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. Due to the presence of a Lewis basic pyridine moiety, these MOFs could serve as luminescent probes for the selective detection of Ce3+ ions with excellent efficiency (10-7 M). The synthesis of Cu(I)-based MOFs and their use to detect Ce3+ ions in water via a turn-on fluorescence process have rarely been reported. These MOFs are highly stable in water, are recyclable, and function efficiently at different pH values.

7.
Luminescence ; 37(3): 370-390, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34994071

RESUMO

Amino acids are the most important part of the human biological system due to their role in living processes. The role of amino acids stretches beyond their traditional role as a building block for proteins, and deficiency of amino acids could lead to decreased immunity, digestive problems, depression, fertility issues, lower mental alertness, slowed growth in children, and many other health issues. The acute detection of amino acids is necessary to determine the human health domain. Here, in this review, we summarize and study the calixarenes as complexes that are of immeasurable value and their utilization for amino acid detection. Key factors such as noncovalent forces, limit of detection, and the supramolecular chemistry of calixarenes with amino acids have been well described. This study presents the most recent efforts made towards the development of potential and highly efficient calixarene-based sensors for the detection of amino acids.


Assuntos
Calixarenos , Aminoácidos , Calixarenos/química , Criança , Humanos
8.
J Assoc Physicians India ; 70(4): 11-12, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35443373

RESUMO

Remogliflozin Etabonate (RE) & Vildagliptin are twice-daily medications that are individually approved and widely used in India for the treatment of diabetes. A single pill fixed dose combination of RE & Vildagliptin was formulated as potential pharmaco-therapeutic agent that would not only offer beneficial pharmacologic effects, but also reduces the pill burden, leading to a simplified treatment regimen with better treatment compliance. The fixed dose combination (FDC) of Remogliflozin + Vildagliptin added on to Metformin has been evaluated in this pivotal phase III study. MATERIAL: This 16 week, multi-centric, prospective, double blind, double dummy, parallel group, randomized controlled study compared efficacy and safety of FDC of RE 100mg + Vildagliptin 50mg (RV) given twice daily with active comparator of Empagliflozin 25mg +Linagliptin 5mg (EL) given once daily. Adult T2DM patients with HbA1c 8-11% on Metformin stable dose of ≥1500mg for ≥8 weeks before screening were randomized to either of treatment arms. The study endpoints were mean changes from baseline (CFB) in HbA1c (primary), fasting plasma glucose (FPG), post-prandial plasma glucose (PPG), body weight (BW) and blood pressure (BP) for efficacy and adverse events (AE) monitoring for safety assessments. OBSERVATION: Of 400 eligible subjects (200 in each arm), 357 (89.3%) subjects completed the study. The baseline demographic characteristics were well balanced between 2 treatment arms. In the mITT population, the least squares (LS) mean (SE) change from baseline in HbA1c levels at week 16 was -1.46% (0.098) in the RV arm and -1.38% (0.100) in the EL arm (p < 0.001 for within group change from baseline). The mean difference of -0.08% (95%CI: -0.28, 0.13) in HbA1c demonstrated non-inferiority (NI) of RV compared to EL (p<0.001 for NI test). Similarly, significant reduction was observed in FPG, PPG, BW and BP which was found to be comparable between the two treatment arms. Drug related AEs were observed in 5.5% and 4.5% subjects of EL and RV arm respectively, with low incidence of hypoglycemia, genital and urinary tract infections (0.5-3%). CONCLUSION: Overall, FDC of Remogliflozin Etabonate + Vildagliptin added on to Metformin was found to be efficacious and well tolerated in the treatment of patients with T2DM, and demonstrated non-inferiority to Empagliflozin 25mg + Linagliptin 5mg treatment added on to Metformin.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Adulto , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Quimioterapia Combinada , Glucosídeos , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/uso terapêutico , Linagliptina/uso terapêutico , Metformina/efeitos adversos , Estudos Prospectivos , Pirazóis , Resultado do Tratamento , Vildagliptina/uso terapêutico
9.
Inorg Chem ; 60(10): 7070-7081, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33884866

RESUMO

Four new triazole-decorated silver(I)-based cationic metal-organic frameworks (MOFs), {[Ag(L1)](BF4)}n (1), {[Ag(L1)](NO3)}n (2), {[Ag(L2)](BF4)}n (3), and {[Ag(L2)](NO3)}n (4), have been synthesized using two newly designed ligands, 3-fluoro-5-(4H-1,2,4-triazol-4-yl)pyridine (L1) and 3-(4H-1,2,4-triazol-4-yl)-5-(trifluoromethyl)pyridine (L2). When the fluorine atom was changed to a trifluoromethyl group at the same position, tremendous enhancement in the MOF dimensionality was achieved [two-dimensional to three-dimensional (3D)]. However, changing the metal salt (used for the synthesis) had no effect. The higher electron-withdrawing tendency of the trifluoromethyl group in L2 aided in the formation of higher-dimensional MOFs with different properties compared with those of the fluoro derivatives. The fluoride group was introduced in the ligand to make highly electron-deficient pores inside the MOFs that can accelerate the anion-exchange process. The concept was proved by density functional theory calculation of the MOFs. Both 3D cationic MOFs were used for dye adsorption, and a remarkable amount of dye was adsorbed in the MOFs. In addition, owing to their cationic nature, the MOFs selectively removed anionic dyes from a mixture of anionic, cationic, and neutral dyes in the aqueous phase. Interestingly, the present MOFs were also highly effective for the removal of oxoanions (MnO4- and Cr2O72-) from water.

10.
J Assoc Physicians India ; 68(12[Special]): 43-48, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33247663

RESUMO

The inadequate control of postprandial glucose (PPG) excursions, are linked in some studies with cardiovascular disease. Even though basal insulins, such as insulin glargine 100 U/mL (Gla-100), maintain overall glycemic control, effective PPG control eventually requires intensification of therapy by adding prandial insulins. Compared to conventional basal-bolus or premixed approaches, a stepwise basal-plus or basal-prandial intensification regimen involving the addition of one, two, or three prandial insulins to basal therapy such as Gla-100, has received much attention in recent times. This intensification approach is comparable to other conventional approaches in terms of glycemic control, and offers the additional advantages of fewer hypoglycemic events, personalization of therapy, and a simple self-management algorithm for titration. Owing to such benefits, recent guidelines recommend its use over other approaches for initiating intensification. It is preferred by both physicians and patients and is a better alternative to immediately embarking on a full basal-bolus regimen or introducing premixed insulin preparations for intensification of therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Insulinas , Glicemia , Hemoglobinas Glicadas/análise , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes , Insulina , Insulina Glargina
11.
Future Med Chem ; 16(8): 689-706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573017

RESUMO

Background: Exploration of the multi-target approach considering both human carbonic anhydrase (hCA) IX and XII and cathepsin B is a promising strategy to target cancer. Methodology & Results: 22 novel 1,2,4-triazole derivatives were synthesized and evaluated for their inhibition efficacy against hCA I, II, IX, XII isoforms and cathepsin B. The compounds demonstrated effective inhibition against hCA IX and/or XII isoforms with considerable selectivity over off-target hCA I/II. All compounds presented significant anticathepsin B activities at a low concentration of 10-7 M and in vitro results were also supported by the molecular modeling studies. Conclusion: Insights of present study can be utilized in the rational design of effective and selective hCA IX and XII inhibitors capable of inhibiting cathepsin B.


[Box: see text].


Assuntos
Inibidores da Anidrase Carbônica , Catepsina B , Triazóis , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/síntese química , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Relação Estrutura-Atividade , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Simulação de Acoplamento Molecular , Modelos Moleculares
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124319, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663133

RESUMO

Schiff base linked1,2,3-triazole silane5has been synthesized through the Schiff base terminated alkyne with azido via click chemistry,the compound4 structure elucidated through X-ray crystallography, and the compound5 is well characterized through different techniques such asFT-IR, 1H and 13C NMR and Mass spectrometry. UV-visible sensing studies of synthesized compounds4 and5 have been performed, and both are efficient in detectingZn(II) ion, but compound 5 has imparted a higher mode of attraction to Zn(II) with limit of detection (LOD) value (1.4 x 10-6M) wherethe compound 4 is calculated to be (1.25 x 10-5M). By Job's method, the stoichiometric ratio of compound5 and Zn(II) iscalculated to bea 1:1 ratio. The complex of compound 5 with Zn(II) was prepared. A radical and oxidative species are responsible for the deteriorating of stabilized molecules. The synthesized compound 5hasantioxidant propertiesthat can potentially scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. Further to verify the mode of binding interaction between compound 5andZn(II), computational Density functional theory (DFT) study was evaluated.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121889, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36150260

RESUMO

Here in, we demonstrate a selective detection of Ag+ ion by the anthracene-based schiff base sensor AMC. The recognition event among sensor AMC and Ag+ ion was investigated by enhanced absorption band, red-shifted quenched emission spectra, electrochemical studies and DFT computational studies. The presence of Ag+ ion to solution of AMC quenched almost 50 % emission intensity of the ligand band. Data from high-resolution electrospray ionization mass spectrometry (ESI-HRMS), Ag+ titrations, and Job's plot studies all show that Ag+ binds to AMC in a 1:1 stoichiometric ratio.The quantitative parameters of sensor for silver ion are determined as the limit of detection (LOD) 5.95 × 10-7 M, and limit of quantitation (LOQ) 1.98 × 10-8 M in the linear range 3.48-20.31 × 10-6 M with good association affinity of 5.030 × 103 M-1. LMCT phenomenon from insilico studies, is in good agreement with the results obtained from other performed spectroscopic techniques. In addition, this sensor AMC was also successfully applied to real water samples for the identification and measurement of Ag+ ions.


Assuntos
Bases de Schiff , Prata , Espectrometria de Fluorescência/métodos , Prata/química , Bases de Schiff/química , Limite de Detecção , Íons , Antracenos , Corantes Fluorescentes/química
14.
ACS Appl Mater Interfaces ; 15(13): 17317-17323, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961965

RESUMO

Anionic, acidic, and metal ions are common contaminants in water and cause serious concerns for human and aquatic life. With the goal of rapid detection of analytes, we herein design a new array of ligand 5-(4H-1,2,4-triazol-4-yl)pyridin-3-ol-linked silver coordinated metal-organic frameworks Ag-MOFs as a promising sensor for Cr2O72-, MnO4-, humic acid (HA), and Fe3+ ions down to the micro level. Furthermore, as evidenced by luminescence, excitation-emission matrix (EEM) spectroscopic, and PXRD measurements, designed metal-organic frameworks (MOFs) can be fast, stable, and reusable for analyte detection in water.

15.
J Hazard Mater ; 453: 131324, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080033

RESUMO

With the increasing population, food toxicity has become a prevalent concern due to the growing contaminants of food products. Therefore, the need for new materials for toxicant detection and food quality monitoring will always be in demand. Metal-organic frameworks (MOFs) based on luminescence and electrochemical sensors with tunable porosity and active surface area are promising materials for food contaminants monitoring. This review summarizes and studies the most recent progress on MOF sensors for detecting food contaminants such as pesticides, antibiotics, toxins, biomolecules, and ionic species. First, with the introduction of MOFs, food contaminants and materials for toxicants detection are discussed. Then the insights into the MOFs as emerging materials for sensing applications with luminescent and electrochemical properties, signal changes, and sensing mechanisms are discussed. Next, recent advances in luminescent and electrochemical MOFs food sensors and their sensitivity, selectivity, and capacities for common food toxicants are summarized. Further, the challenges and outlooks are discussed for providing a new pathway for MOF food contaminant detection tools. Overall, a timely source of information on advanced MOF materials provides materials for next-generation food sensors.


Assuntos
Luminescência , Estruturas Metalorgânicas , Antibacterianos , Alimentos , Substâncias Perigosas
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122358, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702083

RESUMO

Chromium is essential for some biochemical processes, and excess is a big concern that shows adverse effects on human health and the environment. Therefore, it is urgent to design new sensors to detect chromium ions rapidly. The present study discusses the synthesis of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes (4a-4b) and development of 4a as fluorescence turn-on sensor for the detection of Cr3+ ions. The mechanistic insights reveal to the restricted CN rotation and inhibited intramolecular charge transfer (ICT) process. In addition, Job's plot and Benesi-Hildebrand plot justify the 1:1 binding affinity with a binding constant of 9.96 × 105 M-1 for [ligand 4a + Cr3+] complex and the limit of detection for Cr3+ ions is observed as 6.06 × 10-8 M. The fluorescence spectral changes, 1H NMR spectra and DFT studies provide evidences for ligand 4a and Cr3+ ions interactions. Further, the reversibility of the ligand 4a from [ligand 4a + Cr3+] complex on the addition of EDTA can be used in the construction of molecular logic gate where Cr3+ and EDTA are considered as inputs and the fluorescence intensity at 398 nm as output. Further, compounds 4a-4b were then evaluated for their antibacterial activity against bacterial strains (Escherichia coliand Staphylococcus aureus), revealing a modest activity. The binding mode of ligand 4a to Staphylococcus aureus (PDB ID - 3U2K) and Escherichia coli (PDB ID - 5Z4O) was investigated using an in-silico molecular docking technique, which revealed that the triazole ring and silanyl group are involved in hydrogen bonding with proteins and may be the cause of the ligand's antibacterial activity. The ligand 4a demonstrated a high affinity for binding within the active sites of proteins with binding energies of -7.97 kcal/mol (3U2K) and -8.68 kcal/mol (5Z4O).


Assuntos
Cromo , Corantes Fluorescentes , Humanos , Piperazina , Ligantes , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Ácido Edético , Íons
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122618, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934599

RESUMO

Metal ions have active roles in biochemical, industrial, and environmental processes. The design and development of new rapid sensing materials with advanced reasonable, compelling, and convenient, techniques are urgent. Here in this work, we design and develop sensor with the facile amalgamation of the pyrene-based organosilane (5) through a click silylation approach silicon composite for selective detection of Cu2+ ions. Physicochemical and keen methods are employed to perceive the resultant hybrid nanoparticles (H-NPs), and these nanocomposites similarly displayed a strong affection for Cu2+ ions. In addition, the identification restrictions while utilizing 5 and H-NP's towards Cu2+ found in this study are far lower than the WHO rules for drinking water. Further, organosilane (5) shows good antibacterial and antioxidant activity. The antibacterial effects of triazole-based organosilane (5), are evaluated with a molecular docking study with Escherichia coli (IJZQ) was conducted. The selected ligand was revealed to have a reasonable docking score with a binding energy of -8.40 kcal mol-1.


Assuntos
Água Potável , Compostos de Organossilício , Cobre/análise , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Organossilício/farmacologia , Íons
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123015, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37364410

RESUMO

Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.

19.
Environ Int ; 175: 107928, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094512

RESUMO

Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Estruturas Metalorgânicas , Nanopartículas , Humanos , Ecossistema , Preparações Farmacêuticas
20.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929967

RESUMO

In an in-depth investigation of membraneless hydrogen peroxide-based fuel cells (H2O2 FCs), hydrogen peroxide (H2O2), a carbon-neutral compound, is demonstrated to undergo electrochemical decomposition to produce H2O, O2, and electrical energy. The unique redox properties of H2O2 position it as a viable candidate for sustainable energy applications. The proposed membraneless design addresses the limitations of conventional fuel cells, including fabrication complexities and design challenges. A novel three-dimensional electrode, synthesized via electroplating techniques, is introduced. Constructed from Au-electroplated carbon fiber cloth combined with Ni-foam, this electrode showcases enhanced electrochemical reaction kinetics, leading to an increased power density for H2O2 FCs. The performance of fuel cells is intricately linked to the pH levels of the electrolyte solution. Beyond FC applications, such electrodes hold potential in portable energy systems and as high surface area catalysts. This study emphasizes the significance of electrode engineering in optimizing the potential of H2O2 as an environmentally friendly energy source.


Assuntos
Eletricidade , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Oxirredução , Eletrodos , Fibra de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA