Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117858, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38346526

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The plant Typhonium trilobatum has been utilized in traditional medicine for the treatment of many ailments, including parasitic infections. Recent examinations indicate that the bioactive substances from this plant may have antiparasitic activities against Brugia malayi, which have not been determined. PURPOSE: The parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti causing lymphatic filariasis, remain a significant challenge to global public health. Given the ongoing nature of this enduring menace, the current research endeavours to examine the efficacy of an important medicinal plant, Typhonium trilobatum. METHODS: Different extracts of the T. trilobatum tubers were evaluated for their antiparasitic activity. The most prominent extract was subjected to Gas Chromatography Mass Spectrometry (GC-MS) and High Performance Liquid Chromatography (HPLC) followed by Column Chromatography for isolating bioactive molecules. The major compounds were isolated and characterized based on different spectroscopic techniques (FTIR, NMR and HRMS). Further, the antiparasitic activity of the isolated compounds was evaluated against B. malayi and compared with clinically used antifilarial drugs like Diethylcarbamazine and Ivermectin. RESULTS: The methanolic extract of the tuber exhibited significant antiparasitic activity compared to the other extracts. The bioactive molecules isolated from the crude extract were identified as Linoleic acid and Palmitic acid. Antiparasitic activity of both the compounds has been performed against B. malayi and compared with clinically used antifilarial drugs, Ivermectin and DEC. The IC50 value of Linoleic acid was found to be 6.09 ± 0.78 µg/ml after 24 h and 4.27 ± 0.63 µg/ml after 48 h, whereas for Palmitic acid the value was 12.35 ± 1.09 µg/ml after 24 h and 8.79 ± 0.94 µg/ml after 48 h. The IC50 values of both the molecules were found to be similar to the standard drug Ivermectin (IC50 value of 11.88 ± 1.07 µg/ml in 24 h and 2.74 ± 0.43 µg/ml in 48 h), and much better compared to the DEC (IC50 values of 194.2 ± 2.28 µg/ml in 24 h and 101.8 ± 2.06 µg/ml in 48 h). Furthermore, it has been observed that both the crude extracts and the isolated compounds do not exhibit any detrimental effects on the J774.A.1 macrophage cell line. CONCLUSION: The isolation and characterization of bioactive compounds present in the methanolic tuber extract of Typhonium trilobatum were explored. Moreover, the antimicrofilarial activity of the crude extracts and its two major compounds were determined using Brugia malayi microfilarial parasites without any significant side effects.


Assuntos
Brugia Malayi , Filariose , Plantas Medicinais , Animais , Humanos , Filariose/tratamento farmacológico , Filariose/parasitologia , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ácido Palmítico , Ácido Linoleico/farmacologia , Extratos Vegetais/química , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico
2.
Appl Biochem Biotechnol ; 194(10): 4292-4318, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35366187

RESUMO

Epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) plays a pivotal role in cellular signaling, growth, and metabolism. The EGFR-TKD is highly expressed in cancer cells and was endorsed as a therapeutic target for cancer management to overcome metastasis, cell proliferation, and angiogenesis. The novel thiazolo-[2,3-b]quinazolinones series were strategically developed by microwave-assisted organic synthesis and multi dominos reactions aimed to identify the potent thiazolo-[2,3-b]quinazolinone inhibitor against EGFR-TKD. This study explores the binding stability and binding strength of newly developed series via molecular docking, molecular dynamics simulation, and MM/PBSA and MM/GBSA calculations. The binding interaction was observed to be through the functional groups on aryl substituents at positions 3 and 5 of the thiazolo-[2, 3-b]quinazolinone scaffold. The methyl substituents at position 8 of the ligands had prominent hydrophobic interactions corroborating their bindings similar to the reference FDA-approved drug erlotinib in the active site. ADMET predictions reveal that derivatives 5ab, 5aq, and 5bq are drug-like and may be effective in in vitro study. Molecular dynamics simulation for 100 ns of docked complexes revealed their stability at the atomistic level. The ΔGbinding of thiazolo-[2,3-b]quinazolinone was found to be 5ab - 22.45, 5aq - 22.23, and 5bq - 20.76 similar to standard drug, and erlotinib - 24.11 kcal/mol was determined by MM/GBSA method. Furthermore, the anti-proliferative activity of leads of thiazolo-[2,3-b]quinazolinones (n = 3) was studied against breast cancer cell line (MCF-7) and non-small lung carcinoma cell line (H-1299). The highest inhibitions in cell proliferation were shown by 5bq derivatives, and the IC50 was found to be 6.5 ± 0.67 µM against MCF-7 and 14.8 µM against H-1299. The noscapine was also taken as a positive control and showed IC50 at higher concentrations 37 ± 1 against MCF-7 and 46.5 ± 1.2 against H-1299.


Assuntos
Antineoplásicos , Noscapina , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/farmacologia , Cloridrato de Erlotinib/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Noscapina/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Tirosina
3.
RSC Adv ; 11(53): 33288-33293, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497566

RESUMO

A series of fluorophoric and structurally diverse thiazoloquinazoline derivatives were synthesized in a one-pot multicomponent cascade reaction using a microwave irradiation technique. The unique structural arrangement of the synthesized compounds encouraged us to design a new type of bioactive molecular receptor. This receptor interacts with HSO4 - in 1 : 1 and Hg2+ in 1 : 2 binding stoichiometric ratios resulting in a change in fluorescence as well as absorption spectra in aqueous medium. The ion bonded receptor complex possibly enhances the fluorescence signal of the receptor via H-bonded complex formation with HSO4 - ions and co-ordinate complex formation with Hg2+ ions.

4.
RSC Adv ; 10(26): 15354-15359, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495457

RESUMO

Acid-mediated one-pot domino reactions of substituted 2-amino thiazoles, substituted benzaldehydes and cyclic diketones have been developed for the synthesis of novel and architecturally unique thiazolo[2,3-b]quinazolinone derivatives under microwave irradiation. In this protocol, a series of thiazolo[2,3-b]quinazolinone derivatives have been synthesized and the excellent fluorescence behaviors of some of the molecules have been reported based on the incorporation of different electron-donating and electron-withdrawing substituents on the aryl moieties of the target molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA